IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v172y2021ics0040162521004868.html
   My bibliography  Save this article

The evolution of the industrial value chain in China's high-speed rail driven by innovation policies: A patent analysis

Author

Listed:
  • Yuan, Xiaodong
  • Li, Xiaotao

Abstract

High-speed Rail (HSR) is one of the most technological breakthroughs in passenger transportation over the last decades. The rapid development of China's High-speed Rail (CRH) is astonishing. However, it seems to be a “black box” how China has achieved great success in the CRH industry for many organizations or scholars. The paper proposes a novel approach to identify the critical components of an industry value chain and then gains insight into why systemic policies can drive significant breakthroughs in the CRH industry. Our findings highlight that both large companies and universities have played a vital function in the process of technology innovation. Besides, the incentive policies induce many innovators to carry out competition and cooperation, which results in forming and perfecting the industrial value chain. Innovation policies facilitate the evolution of the industrial value chain though there is a time lag of incentive effect. In contrast, the perfect industry value chain contributes to achieving the success of technology innovation. The paper provides insight into the incentive effect of public policies on technology innovation that falls into the scope of Schumpeter Mark II, which can help policymakers perfect incentive policies and managers implement appropriate patent strategies for developing new emerging technologies.

Suggested Citation

  • Yuan, Xiaodong & Li, Xiaotao, 2021. "The evolution of the industrial value chain in China's high-speed rail driven by innovation policies: A patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:tefoso:v:172:y:2021:i:c:s0040162521004868
    DOI: 10.1016/j.techfore.2021.121054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521004868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.121054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keun Lee & Di Qu & Zhuqing Mao, 2021. "Global Value Chains, Industrial Policy, and Industrial Upgrading: Automotive Sectors in Malaysia, Thailand, and China in Comparison with Korea," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(2), pages 275-303, April.
    2. Yuan, Xiaodong & Li, Xiaotao, 2021. "Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems," Energy, Elsevier, vol. 222(C).
    3. de Rassenfosse, Gaétan & Dernis, Hélène & Guellec, Dominique & Picci, Lucio & van Pottelsberghe de la Potterie, Bruno, 2013. "The worldwide count of priority patents: A new indicator of inventive activity," Research Policy, Elsevier, vol. 42(3), pages 720-737.
    4. Jiho Kang & Junseok Lee & Dongsik Jang & Sangsung Park, 2019. "A Methodology of Partner Selection for Sustainable Industry-University Cooperation Based on LDA Topic Model," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    5. Wilfred Dolfsma & Gerben Velde, 2014. "Industry innovativeness, firm size, and entrepreneurship: Schumpeter Mark III?," Journal of Evolutionary Economics, Springer, vol. 24(4), pages 713-736, September.
    6. Yuan, Xiaodong & Li, Xiaotao, 2020. "A network analytic method for measuring patent thickets: A case of FCEV technology," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    7. Soete, Luc, 1987. "The impact of technological innovation on international trade patterns: The evidence reconsidered," Research Policy, Elsevier, vol. 16(2-4), pages 101-130, August.
    8. Lourenco G. D. Faria & Maj M. Andersen, 2017. "Sectoral dynamics and technological convergence: an evolutionary analysis of eco-innovation in the automotive sector," Industry and Innovation, Taylor & Francis Journals, vol. 24(8), pages 837-857, November.
    9. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.
    10. Giulio Buciuni & Vladi Finotto, 2016. "Innovation in Global Value Chains: Co-location of Production and Development in Italian Low-Tech Industries," Regional Studies, Taylor & Francis Journals, vol. 50(12), pages 2010-2023, December.
    11. Rasmus Lema & Roberta Rabellotti & Padmashree Gehl Sampath, 2018. "Innovation Trajectories in Developing Countries: Co-evolution of Global Value Chains and Innovation Systems," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 30(3), pages 345-363, July.
    12. Julia Callegari & Tatiana Massaroli Melo & Carlos Eduardo Carvalho, 2018. "The peculiar insertion of Brazil into global value chains," Review of Development Economics, Wiley Blackwell, vol. 22(3), pages 1321-1342, August.
    13. F. Zhang & X. Zhang, 2014. "Patent activity analysis of vibration-reduction control technology in high-speed railway vehicle systems in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 723-740, September.
    14. Wong, W. G. & Han, B. M. & Ferreira, L. & Zhu, X. N. & Sun, Q. X., 2002. "Evaluation of management strategies for the operation of high-speed railways in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 277-289, March.
    15. Campos, Javier & de Rus, Ginés, 2009. "Some stylized facts about high-speed rail: A review of HSR experiences around the world," Transport Policy, Elsevier, vol. 16(1), pages 19-28, January.
    16. Torrisi, Salvatore & Gambardella, Alfonso & Giuri, Paola & Harhoff, Dietmar & Hoisl, Karin & Mariani, Myriam, 2016. "Used, blocking and sleeping patents: Empirical evidence from a large-scale inventor survey," Research Policy, Elsevier, vol. 45(7), pages 1374-1385.
    17. Jiaojiao Ji & George A. Barnett & Jianxun Chu, 2019. "Global networks of genetically modified crops technology: a patent citation network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 737-762, March.
    18. Venugopalan, Subhashini & Rai, Varun, 2015. "Topic based classification and pattern identification in patents," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 236-250.
    19. Zhenfeng Liu & Jian Feng & Jinfeng Wang, 2020. "Resource-Constrained Innovation Method for Sustainability: Application of Morphological Analysis and TRIZ Inventive Principles," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    20. Goeldner, Moritz & Herstatt, Cornelius & Tietze, Frank, 2015. "The emergence of care robotics — A patent and publication analysis," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 115-131.
    21. Ivan Haščič & Jérôme Silva & Nick Johnstone, 2015. "The Use of Patent Statistics for International Comparisons and Analysis of Narrow Technological Fields," OECD Science, Technology and Industry Working Papers 2015/5, OECD Publishing.
    22. Xia Gao & Jiancheng Guan & Ronald Rousseau, 2011. "Mapping collaborative knowledge production in China using patent co-inventorships," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 343-362, August.
    23. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    24. Wesseling, J.H. & Faber, J. & Hekkert, M.P., 2014. "How competitive forces sustain electric vehicle development," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 154-164.
    25. Chunjuan Luan & Zeyuan Liu & Xianwen Wang, 2013. "Divergence and convergence: technology-relatedness evolution in solar energy industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 461-475, November.
    26. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaotao & Yuan, Xiaodong, 2022. "Tracing the technology transfer of battery electric vehicles in China: A patent citation organization network analysis," Energy, Elsevier, vol. 239(PD).
    2. Fang, Jing & Fu, Fanjie & Zhang, Xiaoqian & Yao, Shujie & Ou, Jinghua, 2024. "Impact of high-speed rail on the mismatch of labor and industry allocations: Evidence from Chinese cities in 2000-2019," Journal of Asian Economics, Elsevier, vol. 92(C).
    3. Jang, Hyejin & Lee, Suyeong & Yoon, Byungun, 2023. "Data-driven techno-socio co-evolution analysis based on a topic model and a hidden Markov model," Technovation, Elsevier, vol. 126(C).
    4. Jiang, Mengting & Fang, Jian & Yang, Yuecheng & Yu, Chengzhi & Li, Jieyi, 2024. "Supply chain concentration, industry concentration and enterprise innovation performance," Finance Research Letters, Elsevier, vol. 63(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaotao & Yuan, Xiaodong, 2022. "Tracing the technology transfer of battery electric vehicles in China: A patent citation organization network analysis," Energy, Elsevier, vol. 239(PD).
    2. Yuan, Xiaodong & Li, Xiaotao, 2021. "Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems," Energy, Elsevier, vol. 222(C).
    3. Yuan, Xiaodong & Cai, Yuchen, 2021. "Forecasting the development trend of low emission vehicle technologies: Based on patent data," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    4. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    5. Yuan, Yuxin & Yuan, Xiaodong, 2023. "Does the development of fuel cell electric vehicles be reviving or recessional? Based on the patent analysis," Energy, Elsevier, vol. 272(C).
    6. Shubbak, Mahmood H., 2019. "Advances in solar photovoltaics: Technology review and patent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Park, Inchae & Triulzi, Giorgio & Magee, Christopher L., 2022. "Tracing the emergence of new technology: A comparative analysis of five technological domains," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    8. Dziallas, Marisa & Blind, Knut, 2019. "Innovation indicators throughout the innovation process: An extensive literature analysis," Technovation, Elsevier, vol. 80, pages 3-29.
    9. Wang, Yunmin & Cao, Guohua & Yan, Youliang & Wang, Jingjing, 2022. "Does high-speed rail stimulate cross-city technological innovation collaboration? Evidence from China," Transport Policy, Elsevier, vol. 116(C), pages 119-131.
    10. Xiaodong Yuan & Weiling Song, 2022. "Evaluating technology innovation capabilities of companies based on entropy- TOPSIS: the case of solar cell companies," Information Technology and Management, Springer, vol. 23(2), pages 65-76, June.
    11. Gianluca Orsatti & François Perruchas & Davide Consoli & Francesco Quatraro, 2020. "Public Procurement, Local Labor Markets and Green Technological Change. Evidence from US Commuting Zones," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 711-739, April.
    12. Dario Guarascio & Mario Pianta & Francesco Bogliacino, 2017. "Export, R&D and New Products: A Model and a Test on European Industries," Economic Complexity and Evolution, in: Andreas Pyka & Uwe Cantner (ed.), Foundations of Economic Change, pages 393-432, Springer.
    13. Alessandra Colombelli & Jackie Krafft & Francesco Quatraro, 2021. "Firms’ growth, green gazelles and eco-innovation: evidence from a sample of European firms," Small Business Economics, Springer, vol. 56(4), pages 1721-1738, April.
    14. Hoppmann, Joern & Wu, Geng & Johnson, Jillian, 2021. "The impact of demand-pull and technology-push policies on firms’ knowledge search," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    15. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    16. Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
    17. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    18. Pitelis, Alkis & Vasilakos, Nicholas & Chalvatzis, Konstantinos, 2020. "Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness," Renewable Energy, Elsevier, vol. 151(C), pages 1163-1172.
    19. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    20. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:172:y:2021:i:c:s0040162521004868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.