IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v142y2019icp235-248.html
   My bibliography  Save this article

Centralized simulated annealing for alleviating vehicular congestion in smart cities

Author

Listed:
  • Amer, Hayder M.
  • Al-Kashoash, Hayder
  • Hawes, Matthew
  • Chaqfeh, Moumena
  • Kemp, Andrew
  • Mihaylova, Lyudmila

Abstract

Vehicular traffic congestion is a serious problem arising in many cities around the world, due to the increasing number of vehicles utilizing roads of a limited capacity. Often the congestion has a considerable influence on the travel time, travel distance, fuel consumption and air pollution. This paper proposes a novel dynamic centralized simulated annealing based approach for finding optimal vehicle routes using a VIKOR type of cost function. Five attributes: the average travel speed of the traffic, vehicles density, roads width, road traffic signals and the roads' length are utilized by the proposed approach to find the optimal paths. The average travel speed and vehicles density values can be obtained from the sensors deployed in smart cities and communicated to vehicles and roadside communication units via vehicular ad hoc networks. The performance of the proposed algorithm is compared with four other algorithms, over two test scenarios: Birmingham and Turin city centres. These show the proposed method improves traffic efficiency in the presence of congestion by an overall average of 24.05%, 48.88% and 36.89% in terms of travel time, fuel consumption and CO2 emission, respectively, for a test scenario from Birmingham city in the UK. Additionally, similar performance patterns are achieved for the a test with data from Turin, Italy.

Suggested Citation

  • Amer, Hayder M. & Al-Kashoash, Hayder & Hawes, Matthew & Chaqfeh, Moumena & Kemp, Andrew & Mihaylova, Lyudmila, 2019. "Centralized simulated annealing for alleviating vehicular congestion in smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 235-248.
  • Handle: RePEc:eee:tefoso:v:142:y:2019:i:c:p:235-248
    DOI: 10.1016/j.techfore.2018.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162517312052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angelelli, E. & Arsik, I. & Morandi, V. & Savelsbergh, M. & Speranza, M.G., 2016. "Proactive route guidance to avoid congestion," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 1-21.
    2. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Chu & Mingwang Cheng & Ning Neil Yu, 2022. "Development potential of Chinese smart cities and its spatio‐temporal pattern: A new hybrid MADM method using combination weight," Growth and Change, Wiley Blackwell, vol. 53(4), pages 1546-1566, December.
    2. Leonardo Guevara & Fernando Auat Cheein, 2020. "The Role of 5G Technologies: Challenges in Smart Cities and Intelligent Transportation Systems," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    3. Yogesh K. Dwivedi & A. Sharma & Nripendra P. Rana & M. Giannakis & P. Goel & Vincent Dutot, 2023. "Evolution of Artificial Intelligence Research in Technological Forecasting and Social Change: Research Topics, Trends, and Future Directions," Post-Print hal-04292607, HAL.
    4. Sadiqa Jafari & Zeinab Shahbazi & Yung-Cheol Byun, 2022. "Improving the Road and Traffic Control Prediction Based on Fuzzy Logic Approach in Multiple Intersections," Mathematics, MDPI, vol. 10(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    2. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    3. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    4. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    5. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    6. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    7. Abbas Keramati & Fatemeh Shapouri, 2016. "Multidimensional appraisal of customer relationship management: integrating balanced scorecard and multi criteria decision making approaches," Information Systems and e-Business Management, Springer, vol. 14(2), pages 217-251, May.
    8. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    9. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    10. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    11. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    12. Alamoodi, A.H. & Zaidan, B.B. & Zaidan, A.A. & Albahri, O.S. & Chen, Juliana & Chyad, M.A. & Garfan, Salem & Aleesa, A.M., 2021. "Machine learning-based imputation soft computing approach for large missing scale and non-reference data imputation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    14. Sirirat Sae Lim & Hong Ngoc Nguyen & Chia-Li Lin, 2022. "Exploring the Development Strategies of Science Parks Using the Hybrid MCDM Approach," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    15. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    16. Zeynep Gamze Mert & Gülşen Akman, 2011. "The Profile of the Organized Industrial Zones in Kocaeli/TURKEY," ERSA conference papers ersa11p1137, European Regional Science Association.
    17. Olga A. Shvetsova & Elena A. Rodionova & Michael Z. Epstein, 2018. "Evaluation of investment projects under uncertainty: multi-criteria approach using interval data," Post-Print hal-01858557, HAL.
    18. Kuang-Hua Hu & Fu-Hsiang Chen & Gwo-Hshiung Tzeng, 2016. "Evaluating the Improvement of Sustainability of Sports Industry Policy Based on MADM," Sustainability, MDPI, vol. 8(7), pages 1-21, June.
    19. Haji Vahabzadeh, Ali & Asiaei, Arash & Zailani, Suhaiza, 2015. "Reprint of “Green decision-making model in reverse logistics using FUZZY-VIKOR method”," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 334-347.
    20. Chunguang Bai & Joseph Sarkis, 2013. "Green information technology strategic justification and evaluation," Information Systems Frontiers, Springer, vol. 15(5), pages 831-847, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:142:y:2019:i:c:p:235-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.