The light and shade of knowledge recombination: Insights from a general-purpose technology
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2017.07.018
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Francesco Paolo Appio & Antonella Martini & Gualtiero Fantoni, 2017. "The light and shade of knowledge recombination: Insights from a general-purpose technology," Post-Print halshs-02292316, HAL.
References listed on IDEAS
- Bresnahan, Timothy F. & Trajtenberg, M., 1995.
"General purpose technologies 'Engines of growth'?,"
Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
- Timothy F. Bresnahan & Manuel Trajtenberg, 1992. "General Purpose Technologies "Engines of Growth?"," NBER Working Papers 4148, National Bureau of Economic Research, Inc.
- Trajtenberg, M. & Bresnahan, T.F., 1992. "General Purpose Technologies: "Engines of Growth"," Papers 16-92, Tel Aviv.
- Grid Thoma, 2009.
"Striving for a large market: evidence from a general purpose technology in action,"
Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 18(1), pages 107-138, February.
- Grid Thoma, 2006. "Striving for a Large Market: Evidence from a General Purpose Technology in Action," KITeS Working Papers 195, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Dec 2006.
- Mark A. Lemley & Carl Shapiro, 2005.
"Probabilistic Patents,"
Journal of Economic Perspectives, American Economic Association, vol. 19(2), pages 75-98, Spring.
- Lemley, Mark A. & Shapiro, Carl, 2004. "Probabilistic Patents," Competition Policy Center, Working Paper Series qt9xf1488p, Competition Policy Center, Institute for Business and Economic Research, UC Berkeley.
- Iordanis Petsas, 2003. "The dynamic effects of general purpose technologies on Schumpeterian growth," Journal of Evolutionary Economics, Springer, vol. 13(5), pages 577-605, December.
- Chaomei Chen & Diana Hicks, 2004. "Tracing knowledge diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 59(2), pages 199-211, February.
- Julie Callaert & Joris Grouwels & Bart Looy, 2012. "Delineating the scientific footprint in technology: Identifying scientific publications within non-patent references," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 383-398, May.
- David, Paul A. & Thomas, Mark (ed.), 2006. "The Economic Future in Historical Perspective," OUP Catalogue, Oxford University Press, number 9780197263471.
- Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
- Nicholas Crafts, 2004.
"Steam as a general purpose technology: A growth accounting perspective,"
Economic Journal, Royal Economic Society, vol. 114(495), pages 338-351, April.
- Crafts, Nicholas, 2003. "Steam as a general purpose technology: a growth accounting perspective," Economic History Working Papers 22354, London School of Economics and Political Science, Department of Economic History.
- Sam Arts & Francesco Paolo Appio & Bart Looy, 2013. "Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive picture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 397-419, November.
- Jan Youtie & Maurizio Iacopetta & Stuart Graham, 2008. "Assessing the nature of nanotechnology: can we uncover an emerging general purpose technology?," The Journal of Technology Transfer, Springer, vol. 33(3), pages 315-329, June.
- Bruno Van Pottelsberghe & Eleftherios Sapsalis & Ran Navon, 2006.
"Academic vs. industry patenting: an in-depth analysis of what determines patent value,"
Working Papers CEB
05-008.RS, ULB -- Universite Libre de Bruxelles.
- Bruno Van Pottelsberghe & Eleftherios Sapsalis & Ran Navon, 2006. "Academic vs. industry patenting: an in-depth analysis of what determines patent value," ULB Institutional Repository 2013/6197, ULB -- Universite Libre de Bruxelles.
- Lipsey, Richard G. & Carlaw, Kenneth I. & Bekar, Clifford T., 2005. "Economic Transformations: General Purpose Technologies and Long-Term Economic Growth," OUP Catalogue, Oxford University Press, number 9780199290895.
- Adam B. Jaffe & Manuel Trajtenberg & Michael S. Fogarty, 2000. "The Meaning of Patent Citations: Report on the NBER/Case-Western Reserve Survey of Patentees," NBER Working Papers 7631, National Bureau of Economic Research, Inc.
- Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009.
"Applicant and examiner citations in U.S. patents: An overview and analysis,"
Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
- Juan Alcacer & Michelle Gittelman & Bhaven Sampat, 2008. "Applicant and Examiner Citations in US Patents: An Overview and Analysis," Harvard Business School Working Papers 09-016, Harvard Business School.
- Lucas Bretschger & Sjak Smulders, 2007.
"Sustainable Resource Use and Economic Dynamics,"
Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 1-13, January.
- Bretschger, L. & Smulders, J.A., 2007. "Sustainable resource use and economic dynamics," Other publications TiSEM fb7079e5-6c6e-4960-91f8-8, Tilburg University, School of Economics and Management.
- Rui Li & Tamy Chambers & Ying Ding & Guo Zhang & Liansheng Meng, 2014. "Patent citation analysis: Calculating science linkage based on citing motivation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 1007-1017, May.
- Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
- Bronwyn H. Hall & Nathan Rosenberg (ed.), 2010. "Handbook of the Economics of Innovation," Handbook of the Economics of Innovation, Elsevier, edition 1, volume 1, number 1.
- Laura I. Schultz & Frederick L. Joutz, 2010. "Methods for identifying emerging General Purpose Technologies: a case study of nanotechnologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 155-170, October.
- Schilling, Melissa A. & Green, Elad, 2011. "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Research Policy, Elsevier, vol. 40(10), pages 1321-1331.
- Nakamura, Hiroko & Suzuki, Shinji & Sakata, Ichiro & Kajikawa, Yuya, 2015. "Knowledge combination modeling: The measurement of knowledge similarity between different technological domains," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 187-201.
- Nelson, Andrew J., 2009. "Measuring knowledge spillovers: What patents, licenses and publications reveal about innovation diffusion," Research Policy, Elsevier, vol. 38(6), pages 994-1005, July.
- Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
- Maryann P. Feldman & Ji Woong Yoon, 2012. "An empirical test for general purpose technology: an examination of the Cohen--Boyer rDNA technology," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 21(2), pages 249-275, April.
- Marina Chicurel, 2002. "Bioinformatics: Bringing it all together technology feature," Nature, Nature, vol. 419(6908), pages 752-755, October.
- Lo, Shih-tse & Sutthiphisal, Dhanoos, 2010. "Crossover Inventions and Knowledge Diffusion of General Purpose Technologies: Evidence from the Electrical Technology," The Journal of Economic History, Cambridge University Press, vol. 70(3), pages 744-764, September.
- Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
- Murmann, Johann Peter & Frenken, Koen, 2006.
"Toward a systematic framework for research on dominant designs, technological innovations, and industrial change,"
Research Policy, Elsevier, vol. 35(7), pages 925-952, September.
- P. Murmann & K. Frenken, 2002. "Toward a Systematic Framework for Research on Dominant Designs, Technological Innovations, and Industrial Change," Papers on Economics and Evolution 2002-12, Philipps University Marburg, Department of Geography.
- Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
- Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
- Dosi, Giovanni, 1993.
"Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change,"
Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
- Dosi, Giovanni, 1982. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 11(3), pages 147-162, June.
- Schaefer, Andreas & Schiess, Daniel & Wehrli, Roger, 2014. "Long-term growth driven by a sequence of general purpose technologies," Economic Modelling, Elsevier, vol. 37(C), pages 23-31.
- Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
- Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
- Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
- Andergassen, Rainer & Nardini, Franco & Ricottilli, Massimo, 2017. "Innovation diffusion, general purpose technologies and economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 40(C), pages 72-80.
- Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
- Kenneth Carlaw & Richard Lipsey, 2011. "Sustained endogenous growth driven by structured and evolving general purpose technologies," Journal of Evolutionary Economics, Springer, vol. 21(4), pages 563-593, October.
- Bresnahan, Timothy, 2010. "General Purpose Technologies," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 761-791, Elsevier.
- Julie Callaert & Bart Van Looy & Arnold Verbeek & Koenraad Debackere & Bart Thijs, 2006. "Traces of Prior Art: An analysis of non-patent references found in patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 3-20, October.
- Harhoff, Dietmar & Gambardella, Alfonso & Verspagen, Bart, 2008. "The Value of European Patents," CEPR Discussion Papers 6848, C.E.P.R. Discussion Papers.
- Gambardella, Alfonso & Giarratana, Marco S., 2013. "General technological capabilities, product market fragmentation, and markets for technology," Research Policy, Elsevier, vol. 42(2), pages 315-325.
- Francesco Paolo Appio & Antonella Martini & Antonio Messeni Petruzzelli & Paolo Neirotti & Bart van Looy, 2017. "Search mechanisms and innovation: An analysis across multiple perspectives," Post-Print halshs-02292314, HAL.
- Novelli, Elena, 2015. "An examination of the antecedents and implications of patent scope," Research Policy, Elsevier, vol. 44(2), pages 493-507.
- Marc Gruber & Dietmar Harhoff & Karin Hoisl, 2013. "Knowledge Recombination Across Technological Boundaries: Scientists vs. Engineers," Management Science, INFORMS, vol. 59(4), pages 837-851, April.
- Bruce Rasmussen, 2010. "Innovation and Commercialisation in the Biopharmaceutical Industry," Books, Edward Elgar Publishing, number 13680.
- Sapsalis, Eleftherios & van Pottelsberghe de la Potterie, Bruno & Navon, Ran, 2006. "Academic versus industry patenting: An in-depth analysis of what determines patent value," Research Policy, Elsevier, vol. 35(10), pages 1631-1645, December.
- Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.
- Jasjit Singh & Lee Fleming, 2010. "Lone Inventors as Sources of Breakthroughs: Myth or Reality?," Management Science, INFORMS, vol. 56(1), pages 41-56, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
- Fusillo, Fabrizio, 2023. "Green Technologies and diversity in the knowledge search and output phases: Evidence from European Patents," Research Policy, Elsevier, vol. 52(4).
- Brea, Edgar, 2024. "The yin yang of AI: Exploring how commercial and non-commercial orientations shape machine learning innovation," Research Policy, Elsevier, vol. 53(6).
- Lili Wang & Zexia Li, 2021. "Knowledge flows from public science to industrial technologies," The Journal of Technology Transfer, Springer, vol. 46(4), pages 1232-1255, August.
- Ardito, Lorenzo & Natalicchio, Angelo & Appio, Francesco Paolo & Messeni Petruzzelli, Antonio, 2021. "The role of scientific knowledge within inventing teams and the moderating effects of team internationalization and team experience: Empirical tests into the aerospace sector," Journal of Business Research, Elsevier, vol. 128(C), pages 701-710.
- Francesco Paolo Appio & Luigi de Luca & Robert Morgan & Antonella Martini, 2019. "Patent portfolio diversity and firm profitability: A question of specialization or diversification?," Post-Print halshs-02292360, HAL.
- Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
- ZHU Chen & MOTOHASHI Kazuyuki, 2022. "Government R&D spending as a driving force of technology convergence," Discussion papers 22030, Research Institute of Economy, Trade and Industry (RIETI).
- Guo, Min & Yang, Naiding & Wang, Jingbei & Zhang, Yanlu & Wang, Yan, 2021. "How do structural holes promote network expansion?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Fusillo, Fabrizio, 2020.
"Are Green Inventions really more complex? Evidence from European Patents,"
Department of Economics and Statistics Cognetti de Martiis. Working Papers
202015, University of Turin.
- Fusillo, Fabrizio, 2020. "Are Green Inventions really more complex? Evidence from European Patents," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 202002, University of Turin.
- Waßenhoven, Anna & Rennings, Michael & Laibach, Natalie & Bröring, Stefanie, 2023. "What constitutes a “Key Enabling Technology” for transition processes: Insights from the bioeconomy's technological landscape," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
- Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Fang Han & Sejun Yoon & Nagarajan Raghavan & Hyunseok Park, 2022. "Investigating Company’s Technical Development Directions Based on Internal Knowledge Inheritance and Inventor Capabilities: The Case of Samsung Electronics," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
- Chen Zhu & Kazuyuki Motohashi, 2023. "Government R&D spending as a driving force of technology convergence: a case study of the Advanced Sequencing Technology Program," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3035-3065, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Adam B. Jaffe & Gaétan de Rassenfosse, 2017.
"Patent citation data in social science research: Overview and best practices,"
Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
- Adam B. Jaffe & Gaétan de Rassenfosse, 2016. "Patent Citation Data in Social Science Research: Overview and Best Practices," NBER Working Papers 21868, National Bureau of Economic Research, Inc.
- Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
- Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020.
"Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?,"
Research Policy, Elsevier, vol. 49(2).
- Nicolò Barbieri & Alberto Marzucchi & Ugo Rizzo, 2018. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," SPRU Working Paper Series 2018-11, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Nicolò Barbieri & Alberto Marzucchi & Ugo Rizzo, 2019. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," SEEDS Working Papers 0819, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2019.
- Hyun Ju Jung, 2020. "Recombination sources and breakthrough inventions: university-developed technology versus firm-developed technology," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1121-1166, August.
- Buchmann, Tobias & Wolf, Patrick, 2024. "Breakthrough inventions in solar PV and wind technologies: The role of scientific discoveries," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
- Yan, Hong-Bin & Li, Ming, 2022. "Consumer demand based recombinant search for idea generation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Madeline K. Kneeland & Melissa A. Schilling & Barak S. Aharonson, 2020. "Exploring Uncharted Territory: Knowledge Search Processes in the Origination of Outlier Innovation," Organization Science, INFORMS, vol. 31(3), pages 535-557, May.
- Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
- Sam Arts & Francesco Paolo Appio & Bart Looy, 2013. "Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive picture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 397-419, November.
- Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
- Ivan Savin, 2021. "On optimal regimes of knowledge exchange: a model of recombinant growth and firm networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 497-527, July.
- Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020.
"The division of labour between academia and industry for the generation of radical inventions,"
The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
- Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2017. "The division of labour between academia and industry for the generation of radical inventions," SEEDS Working Papers 0817, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Nov 2017.
- Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2012.
"The nexus between science and industry: evidence from faculty inventions,"
The Journal of Technology Transfer, Springer, vol. 37(5), pages 755-776, October.
- Czarnitzki, Dirk & Hussinger, Katrin & Schneider, Cédric, 2009. "The nexus between science and industry: evidence from faculty inventions," ZEW Discussion Papers 09-028, ZEW - Leibniz Centre for European Economic Research.
- Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
- Ardito, Lorenzo & Natalicchio, Angelo & Appio, Francesco Paolo & Messeni Petruzzelli, Antonio, 2021. "The role of scientific knowledge within inventing teams and the moderating effects of team internationalization and team experience: Empirical tests into the aerospace sector," Journal of Business Research, Elsevier, vol. 128(C), pages 701-710.
- Jeongsik “Jay” Lee & Hyun Ju Jung & Hyunwoo Park, 2023. "Rare is beautiful? Rareness, technology value, and the moderating role of search domain and knowledge maturity," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1019-1040, April.
- Elena M. Tur & Evangelos Bourelos & Maureen McKelvey, 2022. "The case of sleeping beauties in nanotechnology: a study of potential breakthrough inventions in emerging technologies," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(3), pages 683-708, December.
- Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
- RAITERI Emilio, 2015. "A time to nourish? Evaluating the impact of innovative public procurement on technological generality through patent data," Cahiers du GREThA (2007-2019) 2015-05, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
- Barirani, Ahmad & Beaudry, Catherine & Agard, Bruno, 2017. "Can universities profit from general purpose inventions? The case of Canadian nanotechnology patents," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 271-283.
More about this item
Keywords
Bioinformatics; General purpose technology; Knowledge Recombination; Patents; Backward citations; Forward citations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:125:y:2017:i:c:p:154-165. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.