IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v32y2023i4p1019-1040.html
   My bibliography  Save this article

Rare is beautiful? Rareness, technology value, and the moderating role of search domain and knowledge maturity

Author

Listed:
  • Jeongsik “Jay” Lee
  • Hyun Ju Jung
  • Hyunwoo Park

Abstract

What makes a technology valuable? Characterizing the value as the degree of impact on subsequent technology development and focusing on the rareness as a composite measure of novelty and conventionality representing the relative position of a technology in a technology space, we advance a theory on the relationship between the rareness and value of a technology as well as the moderating role of search basis in shaping the relationship. We build our theory exploiting the fundamental trade‐off between the benefits of adopting a rare technology in pursuing greater recombinant potential and the costs of understanding the rare technology to be adopted and finding complementary technologies for successfully integrating the rare technology in the subsequent technology development process. Using US firm patent data in nanotechnology, we find that the relationship between the rareness and value of a technology exhibits an inverted‐U shape, consistent with our theoretical expectation. Further, the search basis of the focal technology moderates this relationship such that the rareness–value relationship becomes steeper when the technology is built on more local knowledge but flatter if the technology embeds more mature knowledge. Our study contributes to the extant literature seeking to illuminate the process by which valuable technologies arise.

Suggested Citation

  • Jeongsik “Jay” Lee & Hyun Ju Jung & Hyunwoo Park, 2023. "Rare is beautiful? Rareness, technology value, and the moderating role of search domain and knowledge maturity," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1019-1040, April.
  • Handle: RePEc:bla:popmgt:v:32:y:2023:i:4:p:1019-1040
    DOI: 10.1111/poms.13908
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13908
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joan Farre‐Mensa & Deepak Hegde & Alexander Ljungqvist, 2020. "What Is a Patent Worth? Evidence from the U.S. Patent “Lottery”," Journal of Finance, American Finance Association, vol. 75(2), pages 639-682, April.
    2. Hyun Ju Jung, 2020. "Recombination sources and breakthrough inventions: university-developed technology versus firm-developed technology," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1121-1166, August.
    3. Park, Hyunwoo & Lee, Jeongsik (Jay) & Kim, Byung-Cheol, 2015. "Project selection in NIH: A natural experiment from ARRA," Research Policy, Elsevier, vol. 44(6), pages 1145-1159.
    4. Marianna Makri & Michael A. Hitt & Peter J. Lane, 2010. "Complementary technologies, knowledge relatedness, and invention outcomes in high technology mergers and acquisitions," Strategic Management Journal, Wiley Blackwell, vol. 31(6), pages 602-628, June.
    5. Balázs Kovács & Gianluca Carnabuci & Filippo Carlo Wezel, 2021. "Categories, attention, and the impact of inventions," Strategic Management Journal, Wiley Blackwell, vol. 42(5), pages 992-1023, May.
    6. Jeff S. Armstrong & Michael R. Darby & Lynne G. Zucker, 2003. "Commercializing knowledge: university science, knowledge capture and firm performance in biotechnology," Proceedings, Federal Reserve Bank of Dallas, issue Sep, pages 149-170.
    7. Gautam Ahuja & Curba Morris Lampert, 2001. "Entrepreneurship in the large corporation: a longitudinal study of how established firms create breakthrough inventions," Strategic Management Journal, Wiley Blackwell, vol. 22(6‐7), pages 521-543, June.
    8. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    9. Jeongsik “Jay” Lee, 2010. "Heterogeneity, Brokerage, and Innovative Performance: Endogenous Formation of Collaborative Inventor Networks," Organization Science, INFORMS, vol. 21(4), pages 804-822, August.
    10. Isabelle Le Breton-Miller & Danny Miller, 2015. "The paradox of resource vulnerability: Considerations for organizational curatorship," Strategic Management Journal, Wiley Blackwell, vol. 36(3), pages 397-415, March.
    11. Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
    12. Ganco, Martin, 2017. "NK model as a representation of innovative search," Research Policy, Elsevier, vol. 46(10), pages 1783-1800.
    13. Mansfield, Edwin, 1991. "Academic research and industrial innovation," Research Policy, Elsevier, vol. 20(1), pages 1-12, February.
    14. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    15. Dovev Lavie & Israel Drori, 2012. "Collaborating for Knowledge Creation and Application: The Case of Nanotechnology Research Programs," Organization Science, INFORMS, vol. 23(3), pages 704-724, June.
    16. Svenja C. Sommer & Elliot Bendoly & Stylianos Kavadias, 2020. "How Do You Search for the Best Alternative? Experimental Evidence on Search Strategies to Solve Complex Problems," Management Science, INFORMS, vol. 66(3), pages 1395-1420, March.
    17. Sidney G. Winter & Gino Cattani & Alex Dorsch, 2007. "The Value of Moderate Obsession: Insights from a New Model of Organizational Search," Organization Science, INFORMS, vol. 18(3), pages 403-419, June.
    18. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    19. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    20. Dong-Jae Kim & Bruce Kogut, 1996. "Technological Platforms and Diversification," Organization Science, INFORMS, vol. 7(3), pages 283-301, June.
    21. Gautam Ahuja & Riitta Katila, 2004. "Where do resources come from? The role of idiosyncratic situations," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 887-907, August.
    22. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    23. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    24. Atul Nerkar, 2003. "Old Is Gold? The Value of Temporal Exploration in the Creation of New Knowledge," Management Science, INFORMS, vol. 49(2), pages 211-229, February.
    25. Hall, Bronwyn H. & MacGarvie, Megan, 2010. "The private value of software patents," Research Policy, Elsevier, vol. 39(7), pages 994-1009, September.
    26. Konstantinos Grigoriou & Frank T. Rothaermel, 2017. "Organizing for knowledge generation: internal knowledge networks and the contingent effect of external knowledge sourcing," Strategic Management Journal, Wiley Blackwell, vol. 38(2), pages 395-414, February.
    27. Douglas Staiger & James H. Stock & Mark W. Watson, 1997. "The NAIRU, Unemployment and Monetary Policy," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 33-49, Winter.
    28. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    29. Tristan Fitzgerald & Benjamin Balsmeier & Lee Fleming & Gustavo Manso, 2021. "Innovation Search Strategy and Predictable Returns," Management Science, INFORMS, vol. 67(2), pages 1109-1137, February.
    30. Zucker, Lynne G. & Darby, Michael R. & Furner, Jonathan & Liu, Robert C. & Ma, Hongyan, 2007. "Minerva unbound: Knowledge stocks, knowledge flows and new knowledge production," Research Policy, Elsevier, vol. 36(6), pages 850-863, July.
    31. Yongwook Paik & Feng Zhu, 2016. "The Impact of Patent Wars on Firm Strategy: Evidence from the Global Smartphone Industry," Organization Science, INFORMS, vol. 27(6), pages 1397-1416, December.
    32. Natarajan Balasubramanian & Jeongsik Lee & Jagadeesh Sivadasan, 2018. "Deadlines, Workflows, Task Sorting, and Work Quality," Management Science, INFORMS, vol. 64(4), pages 1804-1824, April.
    33. Abernathy, William J. & Clark, Kim B., 1985. "Innovation: Mapping the winds of creative destruction," Research Policy, Elsevier, vol. 14(1), pages 3-22, February.
    34. Mark A. Lemley & Bhaven Sampat, 2012. "Examiner Characteristics and Patent Office Outcomes," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 817-827, August.
    35. Lee, You-Na & Walsh, John P. & Wang, Jian, 2015. "Creativity in scientific teams: Unpacking novelty and impact," Research Policy, Elsevier, vol. 44(3), pages 684-697.
    36. Hall, Bronwyn H. & Khan, Beethika, 2003. "Adoption of New Technology," Department of Economics, Working Paper Series qt3wg4p528, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    37. David L. Deephouse, 1999. "To be different, or to be the same? It’s a question (and theory) of strategic balance," Strategic Management Journal, Wiley Blackwell, vol. 20(2), pages 147-166, February.
    38. Jürgen Mihm & Fabian J. Sting & Tan Wang, 2015. "On the Effectiveness of Patenting Strategies in Innovation Races," Management Science, INFORMS, vol. 61(11), pages 2662-2684, November.
    39. Laura J. Kornish & Karl T. Ulrich, 2011. "Opportunity Spaces in Innovation: Empirical Analysis of Large Samples of Ideas," Management Science, INFORMS, vol. 57(1), pages 107-128, January.
    40. Jung, Hyun Ju & Lee, Jeongsik “Jay”, 2014. "The impacts of science and technology policy interventions on university research: Evidence from the U.S. National Nanotechnology Initiative," Research Policy, Elsevier, vol. 43(1), pages 74-91.
    41. Aharonson, Barak S. & Schilling, Melissa A., 2016. "Mapping the technological landscape: Measuring technology distance, technological footprints, and technology evolution," Research Policy, Elsevier, vol. 45(1), pages 81-96.
    42. Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
    43. Arora, Ashish & Gambardella, Alfonso, 1994. "The changing technology of technological change: general and abstract knowledge and the division of innovative labour," Research Policy, Elsevier, vol. 23(5), pages 523-532, September.
    44. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    45. Eric Yanfei Zhao & P. Devereaux Jennings & Masakazu Ishihara & Michael Lounsbury, 2018. "Optimal Distinctiveness in the Console Video Game Industry: An Exemplar-Based Model of Proto-Category Evolution," Organization Science, INFORMS, vol. 29(4), pages 588-611, August.
    46. Jade Yu-Chieh Lo & Mark Thomas Kennedy, 2015. "Approval in Nanotechnology Patents: Micro and Macro Factors That Affect Reactions to Category Blending," Organization Science, INFORMS, vol. 26(1), pages 119-139, February.
    47. Henrich R. Greve & Marc-David L. Seidel, 2015. "The thin red line between success and failure: Path dependence in the diffusion of innovative production technologies," Strategic Management Journal, Wiley Blackwell, vol. 36(4), pages 475-496, April.
    48. Jasjit Singh & Lee Fleming, 2010. "Lone Inventors as Sources of Breakthroughs: Myth or Reality?," Management Science, INFORMS, vol. 56(1), pages 41-56, January.
    49. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    50. Appel, Ian & Farre-Mensa, Joan & Simintzi, Elena, 2019. "Patent trolls and startup employment," Journal of Financial Economics, Elsevier, vol. 133(3), pages 708-725.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyun Ju Jung, 2020. "Recombination sources and breakthrough inventions: university-developed technology versus firm-developed technology," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1121-1166, August.
    2. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    3. Jung, Hyun Ju & Lee, Jeongsik “Jay”, 2014. "The impacts of science and technology policy interventions on university research: Evidence from the U.S. National Nanotechnology Initiative," Research Policy, Elsevier, vol. 43(1), pages 74-91.
    4. Qu, Guannan & Chen, Jin & Zhang, Ruhao & Wang, Luyao & Yang, Yayu, 2023. "Technological search strategy and breakthrough innovation: An integrated approach based on main-path analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    5. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    6. Russell J. Funk & Jason Owen-Smith, 2017. "A Dynamic Network Measure of Technological Change," Management Science, INFORMS, vol. 63(3), pages 791-817, March.
    7. Rajat Khanna & Isin Guler, 2022. "Degree assortativity in collaboration networks and invention performance," Strategic Management Journal, Wiley Blackwell, vol. 43(7), pages 1402-1430, July.
    8. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    9. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.
    10. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    11. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    12. Appio, Francesco Paolo & Martini, Antonella & Fantoni, Gualtiero, 2017. "The light and shade of knowledge recombination: Insights from a general-purpose technology," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 154-165.
    13. Kathryn Rudie Harrigan & Maria Chiara Guardo & Bo Cowgill, 2017. "Multiplicative-innovation synergies: tests in technological acquisitions," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1212-1233, October.
    14. Yan, Hong-Bin & Li, Ming, 2022. "Consumer demand based recombinant search for idea generation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    15. Leone, Maria Isabella & Messeni Petruzzelli, Antonio & Natalicchio, Angelo, 2022. "Boundary spanning through external technology acquisition: The moderating role of star scientists and upstream alliances," Technovation, Elsevier, vol. 116(C).
    16. Dongqing Lyu & Kaile Gong & Xuanmin Ruan & Ying Cheng & Jiang Li, 2021. "Does research collaboration influence the “disruption” of articles? Evidence from neurosciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 287-303, January.
    17. Jiao, Hao & Wang, Tang & Yang, Jifeng, 2022. "Team structure and invention impact under high knowledge diversity: An empirical examination of computer workstation industry," Technovation, Elsevier, vol. 114(C).
    18. Lee, Kyung Yul & Jung, Hyun Ju & Kwon, Youngsun, 2024. "Boundary-spanning technology search, product component reuse, and new product innovation: Evidence from the smartphone industry," Research Policy, Elsevier, vol. 53(4).
    19. John-Paul Ferguson & Gianluca Carnabuci, 2017. "Risky Recombinations: Institutional Gatekeeping in the Innovation Process," Organization Science, INFORMS, vol. 28(1), pages 133-151, February.
    20. William Arant & Dirk Fornahl & Nils Grashof & Kolja Hesse & Cathrin Söllner, 2019. "University-industry collaborations—The key to radical innovations? [Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 39(2), pages 119-141, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:4:p:1019-1040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.