IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v95y2014icp92-100.html
   My bibliography  Save this article

Spectral properties of MCMC algorithms for Bayesian linear regression with generalized hyperbolic errors

Author

Listed:
  • Jung, Yeun Ji
  • Hobert, James P.

Abstract

We study MCMC algorithms for Bayesian analysis of a linear regression model with generalized hyperbolic errors. The Markov operators associated with the standard data augmentation algorithm and a sandwich variant of that algorithm are shown to be trace-class.

Suggested Citation

  • Jung, Yeun Ji & Hobert, James P., 2014. "Spectral properties of MCMC algorithms for Bayesian linear regression with generalized hyperbolic errors," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 92-100.
  • Handle: RePEc:eee:stapro:v:95:y:2014:i:c:p:92-100
    DOI: 10.1016/j.spl.2014.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214002946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Hee Min & Hobert, James P., 2013. "Analysis of MCMC algorithms for Bayesian linear regression with Laplace errors," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 32-40.
    2. Roy, Vivekananda & Hobert, James P., 2010. "On Monte Carlo methods for Bayesian multivariate regression models with heavy-tailed errors," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1190-1202, May.
    3. Fernández, Carmen & Steel, Mark F.J., 2000. "Bayesian Regression Analysis With Scale Mixtures Of Normals," Econometric Theory, Cambridge University Press, vol. 16(1), pages 80-101, February.
    4. Jones, Galin L. & Haran, Murali & Caffo, Brian S. & Neath, Ronald, 2006. "Fixed-Width Output Analysis for Markov Chain Monte Carlo," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1537-1547, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Qian & Hobert, James P., 2018. "Trace-class Monte Carlo Markov chains for Bayesian multivariate linear regression with non-Gaussian errors," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 335-345.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Hee Min & Hobert, James P., 2013. "Analysis of MCMC algorithms for Bayesian linear regression with Laplace errors," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 32-40.
    2. Li, Haoxiang & Qin, Qian & Jones, Galin L., 2024. "Convergence analysis of data augmentation algorithms for Bayesian robust multivariate linear regression with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    3. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    4. Johnson, Alicia A. & Jones, Galin L., 2015. "Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 325-342.
    5. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    6. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    7. Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
    8. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    9. Takaaki Koike & Mihoko Minami, 2017. "Estimation of Risk Contributions with MCMC," Papers 1702.03098, arXiv.org, revised Jan 2019.
    10. James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.
    11. Masahiro Kuroda & Hiroki Hashiguchi & Shigekazu Nakagawa & Zhi Geng, 2013. "MCMC using Markov bases for computing $$p$$ -values in decomposable log-linear models," Computational Statistics, Springer, vol. 28(2), pages 831-850, April.
    12. Terrance Savitsky & Daniel McCaffrey, 2014. "Bayesian Hierarchical Multivariate Formulation with Factor Analysis for Nested Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 275-302, April.
    13. White, Staci A. & Herbei, Radu, 2015. "A Monte Carlo approach to quantifying model error in Bayesian parameter estimation," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 168-181.
    14. Bhattacharya, Sourabh, 2008. "Consistent estimation of the accuracy of importance sampling using regenerative simulation," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2522-2527, October.
    15. Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
    16. Chamberlain Mbah & Kris Peremans & Stefan Van Aelst & Dries F. Benoit, 2019. "Robust Bayesian seemingly unrelated regression model," Computational Statistics, Springer, vol. 34(3), pages 1135-1157, September.
    17. Susan M. Paddock & Terrance D. Savitsky, 2013. "Bayesian hierarchical semiparametric modelling of longitudinal post-treatment outcomes from open enrolment therapy groups," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 795-808, June.
    18. Yongho Ko & Seungwoo Han, 2017. "A Duration Prediction Using a Material-Based Progress Management Methodology for Construction Operation Plans," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
    19. Krzysztof Łatuszyński & Gareth O. Roberts, 2013. "CLTs and Asymptotic Variance of Time-Sampled Markov Chains," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 237-247, March.
    20. Peter L. Boveng & Jay M. Ver Hoef & David E. Withrow & Josh M. London, 2018. "A Bayesian Analysis of Abundance, Trend, and Population Viability for Harbor Seals in Iliamna Lake, Alaska," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1988-2009, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:95:y:2014:i:c:p:92-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.