IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v94y2014icp98-105.html
   My bibliography  Save this article

Estimating the transition matrix of a Markov chain observed at random times

Author

Listed:
  • Barsotti, Flavia
  • De Castro, Yohann
  • Espinasse, Thibault
  • Rochet, Paul

Abstract

We want to recover the transition kernel P of a Markov chain X when only a sub-sequence of X is available. The time gaps between the observations are iid with unknown distribution. We propose a method to build an estimator of P under the assumption that it has some zero entries. Its asymptotic performance is discussed in theory and through numerical simulations.

Suggested Citation

  • Barsotti, Flavia & De Castro, Yohann & Espinasse, Thibault & Rochet, Paul, 2014. "Estimating the transition matrix of a Markov chain observed at random times," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 98-105.
  • Handle: RePEc:eee:stapro:v:94:y:2014:i:c:p:98-105
    DOI: 10.1016/j.spl.2014.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214002478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce A. Craig & Peter P. Sendi, 2002. "Estimation of the transition matrix of a discrete‐time Markov chain," Health Economics, John Wiley & Sons, Ltd., vol. 11(1), pages 33-42, January.
    2. Robert B. Israel & Jeffrey S. Rosenthal & Jason Z. Wei, 2001. "Finding Generators for Markov Chains via Empirical Transition Matrices, with Applications to Credit Ratings," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 245-265, April.
    3. MacRae, Elizabeth Chase, 1977. "Estimation of Time-Varying Markov Processes with Aggregate Data," Econometrica, Econometric Society, vol. 45(1), pages 183-198, January.
    4. Pittenger, A. O., 1982. "Time changes of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 13(2), pages 189-199, August.
    5. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linda Möstel & Marius Pfeuffer & Matthias Fischer, 2020. "Statistical inference for Markov chains with applications to credit risk," Computational Statistics, Springer, vol. 35(4), pages 1659-1684, December.
    2. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    3. Bruce N. Lehmann, 2005. "The Role of Beliefs in Inference for Rational Expectations Models," NBER Working Papers 11758, National Bureau of Economic Research, Inc.
    4. Menzel, Konrad, 2014. "Consistent estimation with many moment inequalities," Journal of Econometrics, Elsevier, vol. 182(2), pages 329-350.
    5. Verdier Valentin, 2018. "Local Semi-Parametric Efficiency of the Poisson Fixed Effects Estimator," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-10, January.
    6. Arthur Lewbel, 2012. "Using Heteroscedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 67-80.
    7. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-Based Identification with Formula Instruments: A Review," NBER Working Papers 31393, National Bureau of Economic Research, Inc.
    8. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    9. Risha Gidwani & Louise B. Russell, 2020. "Estimating Transition Probabilities from Published Evidence: A Tutorial for Decision Modelers," PharmacoEconomics, Springer, vol. 38(11), pages 1153-1164, November.
    10. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    11. P. Lencastre & F. Raischel & P. G. Lind, 2014. "The effect of the number of states on the validity of credit ratings," Papers 1409.2661, arXiv.org.
    12. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    14. Jolakoski, Petar & Pal, Arnab & Sandev, Trifce & Kocarev, Ljupco & Metzler, Ralf & Stojkoski, Viktor, 2023. "A first passage under resetting approach to income dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    15. Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016. "Inference in High-Dimensional Panel Models With an Application to Gun Control," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
    16. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    17. Stanislav Anatolyev, 2007. "Optimal instruments (in Russian)," Quantile, Quantile, issue 2, pages 61-69, March.
    18. Jean Jacod & Michael Sørensen, 2018. "A review of asymptotic theory of estimating functions," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 415-434, July.
    19. Joshua D. Angrist, 2004. "Treatment effect heterogeneity in theory and practice," Economic Journal, Royal Economic Society, vol. 114(494), pages 52-83, March.
    20. Charlier, Erwin & Melenberg, Bertrand & van Soest, Arthur, 2000. "Estimation of a censored regression panel data model using conditional moment restrictions efficiently," Journal of Econometrics, Elsevier, vol. 95(1), pages 25-56, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:94:y:2014:i:c:p:98-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.