IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i9p1737-1744.html
   My bibliography  Save this article

Relationships between distributions with certain symmetries

Author

Listed:
  • Jones, M.C.

Abstract

The genesis of two-way links between the inverse Gaussian and Birnbaum–Saunders distributions is explored and extended. The most general results apply to pairs of distributions with a general ‘S-symmetry’ structure involving a self-inverse function closely related to a transformation function with certain properties. These general results arise by transformation from very simple properties of the familiar Azzalini-type skew-symmetric distributions. They specialise again to relationships between R-symmetric and log-symmetric distributions, between various models related to the inverse Gaussian and Birnbaum–Saunders distributions, relationships involving the sinh–arcsinh transformation, and others. Simple random variate generation is a practical consequence of these relationships.

Suggested Citation

  • Jones, M.C., 2012. "Relationships between distributions with certain symmetries," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1737-1744.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:9:p:1737-1744
    DOI: 10.1016/j.spl.2012.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. C. Jones & Arthur Pewsey, 2009. "Sinh-arcsinh distributions," Biometrika, Biometrika Trust, vol. 96(4), pages 761-780.
    2. M.C. Jones, 2007. "Connecting Distributions with Power Tails on the Real Line, the Half Line and the Interval," International Statistical Review, International Statistical Institute, vol. 75(1), pages 58-69, April.
    3. J. Rosco & M. Jones & Arthur Pewsey, 2011. "Skew t distributions via the sinh-arcsinh transformation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 630-652, November.
    4. Ramesh C. Gupta & Debasis Kundu, 2011. "Weighted inverse Gaussian -- a versatile lifetime model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2695-2708, February.
    5. Leiva, Víctor & Hernández, Hugo & Sanhueza, Antonio, 2008. "An R Package for a General Class of Inverse Gaussian Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 26(i04).
    6. Antonio Sanhueza & Víctor Leiva & N. Balakrishnan, 2008. "A new class of inverse Gaussian type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(1), pages 31-49, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lemonte, Artur J., 2013. "A new extended Birnbaum–Saunders regression model for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 34-50.
    2. Mudholkar, Govind S. & Yu, Ziji & Awadalla, Saria S., 2015. "The mode-centric M-Gaussian distribution: A model for right skewed data," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    2. Arthur Pewsey & Toshihiro Abe, 2015. "The sinh-arcsinhed logistic family of distributions: properties and inference," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 573-594, June.
    3. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.
    4. Magne Mogstad & Joseph P Romano & Azeem M Shaikh & Daniel Wilhelm, 2024. "Inference for Ranks with Applications to Mobility across Neighbourhoods and Academic Achievement across Countries," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 476-518.
    5. J. Hambuckers & C. Heuchenne, 2017. "A robust statistical approach to select adequate error distributions for financial returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 137-161, January.
    6. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    7. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Leiva, Víctor & Hernández, Hugo & Sanhueza, Antonio, 2008. "An R Package for a General Class of Inverse Gaussian Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 26(i04).
    9. Francisco J. Rubio & Yili Hong, 2016. "Survival and lifetime data analysis with a flexible class of distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1794-1813, August.
    10. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    11. Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
    12. Christopher Partlett & Prakash Patil, 2017. "Measuring asymmetry and testing symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 429-460, April.
    13. Manuel Ammann & Alexander Feser, 2019. "Robust Estimation of Risk-Neutral Moments," Working Papers on Finance 1902, University of St. Gallen, School of Finance.
    14. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    15. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    16. Bagkavos, Dimitrios & Patil, Prakash N., 2021. "Improving the Wilcoxon signed rank test by a kernel smooth probability integral transformation," Statistics & Probability Letters, Elsevier, vol. 171(C).
    17. Matsumoto, Ken'ichi & Voudouris, Vlasios & Stasinopoulos, Dimitrios & Rigby, Robert & Di Maio, Carlo, 2012. "Exploring crude oil production and export capacity of the OPEC Middle East countries," Energy Policy, Elsevier, vol. 48(C), pages 820-828.
    18. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2015. "Depth-based runs tests for bivariate central symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 917-941, October.
    19. Tiefeng Ma & Shuangzhe Liu & S. Ahmed, 2014. "Shrinkage estimation for the mean of the inverse Gaussian population," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 733-752, August.
    20. Robert Staudte, 2014. "Inference for quantile measures of skewness," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 751-768, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:9:p:1737-1744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.