An R Package for a General Class of Inverse Gaussian Distributions
Author
Abstract
Suggested Citation
DOI: http://hdl.handle.net/10.18637/jss.v026.i04
Download full text from publisher
References listed on IDEAS
- Antonio Sanhueza & Víctor Leiva & N. Balakrishnan, 2008. "A new class of inverse Gaussian type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(1), pages 31-49, June.
- Govind Mudholkar & Rajeshwari Natarajan, 2002. "The Inverse Gaussian Models: Analogues of Symmetry, Skewness and Kurtosis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 138-154, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jones, M.C., 2012. "Relationships between distributions with certain symmetries," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1737-1744.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:jss:jstsof:26:i04 is not listed on IDEAS
- José A. Villaseñor & Elizabeth González-Estrada & Adrián Ochoa, 2019. "On Testing the Inverse Gaussian Distribution Hypothesis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 60-74, June.
- Jones, M.C., 2012. "Relationships between distributions with certain symmetries," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1737-1744.
- Tiefeng Ma & Shuangzhe Liu & S. Ahmed, 2014. "Shrinkage estimation for the mean of the inverse Gaussian population," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 733-752, August.
- Yogendra P. Chaubey & Murari Singh & Debaraj Sen, 2017. "Symmetrizing and Variance Stabilizing Transformations of Sample Coefficient of Variation from Inverse Gaussian Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 217-246, November.
- Adriano Suzuki & Vicente Cancho & Francisco Louzada, 2016. "The Poisson–Inverse-Gaussian regression model with cure rate: a Bayesian approach and its case influence diagnostics," Statistical Papers, Springer, vol. 57(1), pages 133-159, March.
- Mondal, Anjana & Kumar, Somesh, 2024. "Inference on order restricted means of inverse Gaussian populations under heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Liu, Xuhua & Li, Na & Hu, Yuqin, 2015. "Combining inferences on the common mean of several inverse Gaussian distributions based on confidence distribution," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 136-142.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:026:i04. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.