IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i8p1489-1496.html
   My bibliography  Save this article

Multivariate maxima of moving multivariate maxima

Author

Listed:
  • Ferreira, Helena

Abstract

We define a class of multivariate maxima of moving multivariate maxima, generalising the M4 processes. For these stationary multivariate time series we characterise the joint distribution of extremes and compute the multivariate extremal index. We derive the bivariate upper tail dependence coefficients and the extremal coefficient of the new limiting multivariate extreme value distributions.

Suggested Citation

  • Ferreira, Helena, 2012. "Multivariate maxima of moving multivariate maxima," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1489-1496.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:8:p:1489-1496
    DOI: 10.1016/j.spl.2012.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    2. A. Martins & H. Ferreira, 2005. "The multivariate extremal index and the dependence structure of a multivariate extreme value distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 433-448, December.
    3. Hall, Peter & Peng, Liang & Yao, Qiwei, 2002. "Moving-maximum models for extrema of time series," LSE Research Online Documents on Economics 6084, London School of Economics and Political Science, LSE Library.
    4. Deheuvels, Paul, 1983. "Point processes and multivariate extreme values," Journal of Multivariate Analysis, Elsevier, vol. 13(2), pages 257-272, June.
    5. Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Martins & H. Ferreira, 2014. "Extremal properties of M4 processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 388-408, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2010. "Bayesian Estimation and Particle Filter for Max-Stable Processes," CIRJE F-Series CIRJE-F-757, CIRJE, Faculty of Economics, University of Tokyo.
    2. Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2012. "Efficient estimation and particle filter for max‐stable processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 61-80, January.
    3. Zhengjun Zhang, 2008. "The estimation of M4 processes with geometric moving patterns," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(1), pages 121-150, March.
    4. Zhengjun Zhang, 2009. "On approximating max-stable processes and constructing extremal copula functions," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 89-114, February.
    5. Zhang, Zhengjun & Zhu, Bin, 2016. "Copula structured M4 processes with application to high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 231-241.
    6. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
    7. Zhang, Zhengjun & Shinki, Kazuhiko, 2007. "Extreme co-movements and extreme impacts in high frequency data in finance," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1399-1415, May.
    8. A. Martins & H. Ferreira, 2014. "Extremal properties of M4 processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 388-408, June.
    9. Kiriliouk, Anna & Lee, Jeongjin & Segers, Johan, 2023. "X-Vine Models for Multivariate Extremes," LIDAM Discussion Papers ISBA 2023038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Hashorva, Enkelejd & Weng, Zhichao, 2013. "Limit laws for extremes of dependent stationary Gaussian arrays," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 320-330.
    11. Saminger-Platz Susanne & Kolesárová Anna & Šeliga Adam & Mesiar Radko & Klement Erich Peter, 2024. "On comprehensive families of copulas involving the three basic copulas and transformations thereof," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    12. Michel Grabisch & Jean-Luc Marichal & Radko Mesiar & Endre Pap, 2011. "Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00539032, HAL.
    13. Durante Fabrizio & Sánchez Juan Fernández & Sempi Carlo, 2018. "A note on bivariate Archimax copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 178-182, October.
    14. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    15. Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
    16. Dominique Guegan & Bertrand Hassani, 2011. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Documents de travail du Centre d'Economie de la Sorbonne 11017r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2011.
    17. Wysocki, Włodzimierz, 2013. "When a copula is archimax," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 37-45.
    18. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    19. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    20. Rihab Bedoui & Makram Ben Dbabis, 2009. "Copulas and bivariate risk measures : an application to hedge funds," Working Papers hal-04140876, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:8:p:1489-1496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.