IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v27y2021i3d10.1007_s10985-021-09520-w.html
   My bibliography  Save this article

Estimating duration distribution aided by auxiliary longitudinal measures in presence of missing time origin

Author

Listed:
  • Yi Xiong

    (Simon Fraser University)

  • W. John Braun

    (University of British Columbia - Kelowna)

  • X. Joan Hu

    (Simon Fraser University)

Abstract

Understanding the distribution of an event duration time is essential in many studies. The exact time to the event is often unavailable, and thus so is the full event duration. By linking relevant longitudinal measures to the event duration, we propose to estimate the duration distribution via the first-hitting-time model (e.g. Lee and Whitmore in Stat Sci 21(4):501–513, 2006). The longitudinal measures are assumed to follow a Wiener process with random drift. We apply a variant of the MCEM algorithm to compute likelihood-based estimators of the parameters in the longitudinal process model. This allows us to adapt the well-known empirical distribution function to estimate the duration distribution in the presence of missing time origin. Estimators with smooth realizations can then be obtained by conventional smoothing techniques. We establish the consistency and weak convergence of the proposed distribution estimator and present its variance estimation. We use a collection of wildland fire records from Alberta, Canada to motivate and illustrate the proposed approach. The finite-sample performance of the proposed estimator is examined by simulation. Viewing the available data as interval-censored times, we show that the proposed estimator can be more efficient than the well-established Turnbull estimator, an alternative that is often applied in such situations.

Suggested Citation

  • Yi Xiong & W. John Braun & X. Joan Hu, 2021. "Estimating duration distribution aided by auxiliary longitudinal measures in presence of missing time origin," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 388-412, July.
  • Handle: RePEc:spr:lifeda:v:27:y:2021:i:3:d:10.1007_s10985-021-09520-w
    DOI: 10.1007/s10985-021-09520-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-021-09520-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-021-09520-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiao, 2010. "Wiener processes with random effects for degradation data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 340-351, February.
    2. Chiung-Yu Huang & Jing Qin, 2011. "Nonparametric estimation for length-biased and right-censored data," Biometrika, Biometrika Trust, vol. 98(1), pages 177-186.
    3. George M. Parks, 1964. "Development and Application of a Model for Suppression of Forest Fires," Management Science, INFORMS, vol. 10(4), pages 760-766, July.
    4. R. Balasubramanian, 2003. "Estimation of a failure time distribution based on imperfect diagnostic tests," Biometrika, Biometrika Trust, vol. 90(1), pages 171-182, March.
    5. Brian S. Caffo & Wolfgang Jank & Galin L. Jones, 2005. "Ascent‐based Monte Carlo expectation– maximization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 235-251, April.
    6. David L. Martell, 2007. "Forest Fire Management," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 489-509, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
    2. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    3. Araya-Córdova, P.J. & Vásquez, Óscar C., 2018. "The disaster emergency unit scheduling problem to control wildfires," International Journal of Production Economics, Elsevier, vol. 200(C), pages 311-317.
    4. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    5. Yue, Chen & Chen, Shaojie & Sair, Haris I. & Airan, Raag & Caffo, Brian S., 2015. "Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 126-133.
    6. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    7. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    8. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    9. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    10. Huang, Zhelin & Xu, Fan & Yang, Fangfang, 2023. "State of health prediction of lithium-ion batteries based on autoregression with exogenous variables model," Energy, Elsevier, vol. 262(PB).
    11. Liu, Di & Wang, Shaoping & Cui, Xiaoyu, 2022. "An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    12. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Koutchad, P. & Carpentier, A. & Femenia, F., 2018. "Dealing with corner solutions in multi-crop micro-econometric models: an endogenous regime approach with regime fixed costs," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277530, International Association of Agricultural Economists.
    14. Adam Behrendt & Vineet M. Payyappalli & Jun Zhuang, 2019. "Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1358-1381, June.
    15. Jacobo Uña-Álvarez, 2013. "Comments on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 414-418, September.
    16. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    17. Yan, Bingxin & Ma, Xiaobing & Yang, Li & Wang, Han & Wu, Tianyi, 2020. "A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
    19. Yifan He & Yong Zhou, 2020. "Nonparametric and semiparametric estimators of restricted mean survival time under length-biased sampling," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 761-788, October.
    20. Tingting Huang & Songming Chen & Yuepu Zhao & Wei Dai, 2023. "Reliability assessment of degradation processes with random shocks considering recoverable shock damages," Journal of Risk and Reliability, , vol. 237(6), pages 1150-1162, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:27:y:2021:i:3:d:10.1007_s10985-021-09520-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.