IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i4p843-851.html
   My bibliography  Save this article

Nonparametric estimation of the regression function having a change point in generalized linear models

Author

Listed:
  • Huh, Jib

Abstract

In this paper, the local polynomial fit based on the kernel weighted local-likelihood function and the location of the change point is considered as an estimator for the regression function or its νth derivative. Using the data sets split by the location, we estimate the left and right parts of the regression function or its νth derivative. The global L2 rate of convergence of the estimated function is derived. The finite-sample performances of the proposed estimators are illustrated using simulated and real examples.

Suggested Citation

  • Huh, Jib, 2012. "Nonparametric estimation of the regression function having a change point in generalized linear models," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 843-851.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:4:p:843-851
    DOI: 10.1016/j.spl.2012.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212000193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huh, Jib, 2010. "Detection of a change point based on local-likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1681-1700, August.
    2. Huh, J. & Park, B. U., 2002. "Likelihood-Based Local Polynomial Fitting for Single-Index Models," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 302-321, February.
    3. Grégoire, Gérard & Hamrouni, Zouhir, 2002. "Change Point Estimation by Local Linear Smoothing," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 56-83, October.
    4. Huh, J. & Carrière, K. C., 2002. "Estimation of regression functions with a discontinuity in a derivative with local polynomial fits," Statistics & Probability Letters, Elsevier, vol. 56(3), pages 329-343, February.
    5. Irène Gijbels & Alexandre Lambert & Peihua Qiu, 2007. "Jump-Preserving Regression and Smoothing using Local Linear Fitting: A Compromise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 235-272, June.
    6. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huh, Jib, 2010. "Detection of a change point based on local-likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1681-1700, August.
    2. Park, Cheolwoo & Huh, Jib, 2013. "Statistical inference and visualization in scale-space using local likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 336-348.
    3. Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Rank-based inference for the single-index model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 535-541.
    4. Einmahl, J.H.J. & Gantner, M., 2009. "The Half-Half Plot," Other publications TiSEM 88c03da5-f408-4cd8-a7f9-0, Tilburg University, School of Economics and Management.
    5. Gantner, M., 2010. "Some nonparametric diagnostic statistical procedures and their asymptotic behavior," Other publications TiSEM eb04bdba-bf8a-4f6c-8dd8-9, Tilburg University, School of Economics and Management.
    6. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    7. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    8. Xinghui Wang & Wenjing Geng & Ruidong Han & Qifa Xu, 2023. "Asymptotic Properties of the M-estimation for an AR(1) Process with a General Autoregressive Coefficient," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-23, March.
    9. Jungjun Choi & In Choi, 2019. "Maximum likelihood estimation of autoregressive models with a near unit root and Cauchy errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1121-1142, October.
    10. Yujiao Yang & Qiongxia Song, 2014. "Jump detection in time series nonparametric regression models: a polynomial spline approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 325-344, April.
    11. Song, Song & Ritov, Ya’acov & Härdle, Wolfgang K., 2012. "Bootstrap confidence bands and partial linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 244-262.
    12. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    13. Dima, Bogdan & Dincă, Marius Sorin & Spulbăr, Cristi, 2014. "Financial nexus: Efficiency and soundness in banking and capital markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 100-124.
    14. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    15. Ioannis Kalogridis, 2022. "Asymptotics for M-type smoothing splines with non-smooth objective functions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 373-389, June.
    16. Yuta Umezu & Yusuke Shimizu & Hiroki Masuda & Yoshiyuki Ninomiya, 2019. "AIC for the non-concave penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 247-274, April.
    17. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    18. Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org, revised Jan 2025.
    19. Chaohua Dong & Jiti Gao & Yundong Tu & Bin Peng, 2023. "Robust M-Estimation for Additive Single-Index Cointegrating Time Series Models," Papers 2301.06631, arXiv.org.
    20. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:4:p:843-851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.