IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v56y2002i3p329-343.html
   My bibliography  Save this article

Estimation of regression functions with a discontinuity in a derivative with local polynomial fits

Author

Listed:
  • Huh, J.
  • Carrière, K. C.

Abstract

We consider an estimation strategy for regression functions which may have discontinuity/change point in the derivative functions at an unknown location. First, we propose methods of estimation for the location and the jump size of the change point via the local polynomial fitting based on a kernel weighted method. The estimated location of the change point will be shown to achieve the asymptotic minimax rate of convergence of n-1/(2[nu]+1), where [nu] is the degree of the derivative. Next, using the data sets split by the estimated location of the change point, we estimate their respective regression functions. Global Lp rate of convergence of the estimated regression function is derived. Computer simulation will demonstrate the improved performance of the proposed methods over the existing ones.

Suggested Citation

  • Huh, J. & Carrière, K. C., 2002. "Estimation of regression functions with a discontinuity in a derivative with local polynomial fits," Statistics & Probability Letters, Elsevier, vol. 56(3), pages 329-343, February.
  • Handle: RePEc:eee:stapro:v:56:y:2002:i:3:p:329-343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00017-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Müller, Hans-Georg & Song, Kai-Sheng, 1997. "Two-stage change-point estimators in smooth regression models," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 323-335, June.
    2. Irene Gijbels & Peter Hall & Aloïs Kneip, 1999. "On the Estimation of Jump Points in Smooth Curves," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(2), pages 231-251, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huh, Jib, 2010. "Detection of a change point based on local-likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1681-1700, August.
    2. Huh, Jib, 2012. "Nonparametric estimation of the regression function having a change point in generalized linear models," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 843-851.
    3. Jens Klotsche & Andrew T. Gloster, 2012. "Estimating a Meaningful Point of Change," Journal of Educational and Behavioral Statistics, , vol. 37(5), pages 579-600, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grégoire, Gérard & Hamrouni, Zouhir, 2002. "Change Point Estimation by Local Linear Smoothing," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 56-83, October.
    2. Zhanfeng Wang & Wenxin Liu & Yuanyuan Lin, 2015. "A change-point problem in relative error-based regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 835-856, December.
    3. Irène Gijbels & Alexandre Lambert & Peihua Qiu, 2007. "Jump-Preserving Regression and Smoothing using Local Linear Fitting: A Compromise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 235-272, June.
    4. Huh, Jib, 2010. "Detection of a change point based on local-likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1681-1700, August.
    5. Cui, Yan & Yang, Jun & Zhou, Zhou, 2023. "State-domain change point detection for nonlinear time series regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 3-27.
    6. Yujiao Yang & Qiongxia Song, 2014. "Jump detection in time series nonparametric regression models: a polynomial spline approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 325-344, April.
    7. Yicheng Kang & Xiaodong Gong & Jiti Gao & Peihua Qiu, 2016. "Error-in-Variables Jump Regression Using Local Clustering," Monash Econometrics and Business Statistics Working Papers 13/16, Monash University, Department of Econometrics and Business Statistics.
    8. Atul Mallik & Moulinath Banerjee & George Michailidis, 2020. "M-estimation in Multistage Sampling Procedures," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 261-309, August.
    9. Porter, Jack & Yu, Ping, 2015. "Regression discontinuity designs with unknown discontinuity points: Testing and estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 132-147.
    10. Müller, Hans-Georg & Wai, Newton, 2006. "Asymptotic fluctuations of mutagrams," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1201-1210, July.
    11. Ferger Dietmar & Klotsche Jens, 2009. "Estimation of split-points in binary regression," Statistics & Risk Modeling, De Gruyter, vol. 27(02), pages 93-128, December.
    12. Xiaodong Gong & Jiti Gao, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," Monash Econometrics and Business Statistics Working Papers 6/15, Monash University, Department of Econometrics and Business Statistics.
    13. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    14. Einmahl, J.H.J. & Gantner, M., 2009. "The Half-Half Plot," Other publications TiSEM 88c03da5-f408-4cd8-a7f9-0, Tilburg University, School of Economics and Management.
    15. Daniel J. Henderson & Christopher F. Parmeter & Liangjun Su, 2017. "M-Estimation of a Nonparametric Threshold Regression Model," Working Papers 2017-15, University of Miami, Department of Economics.
    16. Moosup Kim & Sangyeol Lee, 2011. "Change point test for tail index for dependent data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 297-311, November.
    17. Genest Christian & Scherer Matthias, 2023. "When copulas and smoothing met: An interview with Irène Gijbels," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-16, January.
    18. Lingsong Zhang & Zhengyuan Zhu & J. S. Marron, 2014. "Multiresolution anomaly detection method for fractional Gaussian noise," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 769-784, April.
    19. Shujie Ma & Lijian Yang, 2011. "A jump-detecting procedure based on spline estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 67-81.
    20. Jens Klotsche & Andrew T. Gloster, 2012. "Estimating a Meaningful Point of Change," Journal of Educational and Behavioral Statistics, , vol. 37(5), pages 579-600, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:56:y:2002:i:3:p:329-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.