IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i3p586-591.html
   My bibliography  Save this article

A note on transition density for the reflected Ornstein–Uhlenbeck process

Author

Listed:
  • Xing, Xiaoyu
  • Xing, Yongsheng
  • Yang, Xuewei

Abstract

This note focuses on the Ornstein–Uhlenbeck process reflected at its long-run level (or long-run mean). The analytical closed-form of the transition density is obtained by virtue of the Skorokhod equation and the time-change for martingales. Our result is consistent with that presented by Linetsky (2005). Finally, an open problem concerning the general cases (reflected at an arbitrary level) is proposed.

Suggested Citation

  • Xing, Xiaoyu & Xing, Yongsheng & Yang, Xuewei, 2012. "A note on transition density for the reflected Ornstein–Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 586-591.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:586-591
    DOI: 10.1016/j.spl.2011.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211003737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2011.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lijun Bo & Dan Tang & Yongjin Wang & Xuewei Yang, 2011. "On the conditional default probability in a regulated market: a structural approach," Quantitative Finance, Taylor & Francis Journals, vol. 11(12), pages 1695-1702.
    2. Chuang Yi, 2010. "On the first passage time distribution of an Ornstein-Uhlenbeck process," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 957-960.
    3. Olivier Scaillet & Boris Leblanc, 1998. "Path dependent options on yields in the affine term structure model," Finance and Stochastics, Springer, vol. 2(4), pages 349-367.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Archil Gulisashvili, 2020. "Large deviation principles for stochastic volatility models with reflection and three faces of the Stein and Stein model," Papers 2006.15431, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Lipton & Vadim Kaushansky, 2018. "On the First Hitting Time Density of an Ornstein-Uhlenbeck Process," Papers 1810.02390, arXiv.org, revised Oct 2018.
    2. Lingfei Li & Vadim Linetsky, 2015. "Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach," Finance and Stochastics, Springer, vol. 19(4), pages 941-977, October.
    3. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    4. Alexander Lipton, 2020. "Old Problems, Classical Methods, New Solutions," Papers 2003.06903, arXiv.org.
    5. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.
    6. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    7. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
    8. Gzyl, Henryk & ter Horst, Enrique & Villasana, Minaya, 2015. "Numerical determination of hitting time distributions from their Laplace transforms: One dimensional diffusions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 594-602.
    9. Curato, Imma Valentina & Mancino, Maria Elvira & Recchioni, Maria Cristina, 2018. "Spot volatility estimation using the Laplace transform," Econometrics and Statistics, Elsevier, vol. 6(C), pages 22-43.
    10. Xindan Li & Dan Tang & Yongjin Wang & Xuewei Yang, 2014. "Optimal processing rate and buffer size of a jump-diffusion processing system," Annals of Operations Research, Springer, vol. 217(1), pages 319-335, June.
    11. Bossaerts, P. & Ghysels, E. & Gourieroux, C., 1996. "Arbitrage-Based Pricing when Volatility is Stochastic," Cahiers de recherche 9615, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    12. Alexander Novikov & R. E. Melchers & E. Shinjikashvili & N. Kordzakhia, 2003. "First Passage Time of Filtered Poisson Process with Exponential Shape Function," Research Paper Series 109, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Ditlevsen, Susanne, 2007. "A result on the first-passage time of an Ornstein-Uhlenbeck process," Statistics & Probability Letters, Elsevier, vol. 77(18), pages 1744-1749, December.
    14. Patie, Pierre, 2005. "On a martingale associated to generalized Ornstein-Uhlenbeck processes and an application to finance," Stochastic Processes and their Applications, Elsevier, vol. 115(4), pages 593-607, April.
    15. Paul Lescot, 2009. "On affine interest rate models," Papers 0911.2757, arXiv.org, revised Oct 2011.
    16. Jang, Bong-Gyu & Yoon, Ji Hee, 2010. "Analytic valuation formulas for range notes and an affine term structure model with jump risks," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2132-2145, September.
    17. Chuang Yi, 2010. "On the first passage time distribution of an Ornstein-Uhlenbeck process," Quantitative Finance, Taylor & Francis Journals, vol. 10(9), pages 957-960.
    18. Lijun Bo & Yongjin Wang & Xuewei Yang, 2014. "On the Default Probability in a Regime-Switching Regulated Market," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 101-113, March.
    19. Bo, Lijun & Song, Renming & Tang, Dan & Wang, Yongjin & Yang, Xuewei, 2012. "Lévy risk model with two-sided jumps and a barrier dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 280-291.
    20. Andrea Di Iura & Giulia Terenzi, 2022. "A Bayesian analysis of gain-loss asymmetry," SN Business & Economics, Springer, vol. 2(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:3:p:586-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.