IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i12p2206-2212.html
   My bibliography  Save this article

Estimating frequencies of frequencies in finite populations

Author

Listed:
  • Skinner, C.J.
  • Shlomo, N.

Abstract

Given a sample from a finite population partitioned into classes, we consider estimating the distribution of the class frequencies. We propose first to estimate certain moments of this distribution, assuming Poisson sampling with unequal inclusion probabilities, and then to adapt these estimates using modelling assumptions. A simulation study illustrates the bias-robustness of the approach to departures from these assumptions.

Suggested Citation

  • Skinner, C.J. & Shlomo, N., 2012. "Estimating frequencies of frequencies in finite populations," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2206-2212.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2206-2212
    DOI: 10.1016/j.spl.2012.07.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.07.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. J. Skinner & M. J. Elliot, 2002. "A measure of disclosure risk for microdata," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 855-867, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalie Shlomo & Chris Skinner, 2022. "Measuring risk of re‐identification in microdata: State‐of‐the art and new directions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1644-1662, October.
    2. James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
    3. Reiter, Jerome P. & Drechsler, Jörg, 2007. "Releasing multiply-imputed synthetic data generated in two stages to protect confidentiality," IAB-Discussion Paper 200720, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    4. Christine M. O'Keefe & James O. Chipperfield, 2013. "A Summary of Attack Methods and Confidentiality Protection Measures for Fully Automated Remote Analysis Systems," International Statistical Review, International Statistical Institute, vol. 81(3), pages 426-455, December.
    5. Skinner, Chris J., 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," LSE Research Online Documents on Economics 39105, London School of Economics and Political Science, LSE Library.
    6. Duncan Smith, 2020. "Re‐identification in the Absence of Common Variables for Matching," International Statistical Review, International Statistical Institute, vol. 88(2), pages 354-379, August.
    7. Tapan K. Nayak & Samson A. Adeshiyan, 2016. "On Invariant Post-randomization for Statistical Disclosure Control," International Statistical Review, International Statistical Institute, vol. 84(1), pages 26-42, April.
    8. Shlomo, Natalie & Skinner, Chris, 2022. "Measuring risk of re-identification in microdata: state-of-the art and new directions," LSE Research Online Documents on Economics 117168, London School of Economics and Political Science, LSE Library.
    9. Li‐Chun Zhang & Gustav Haraldsen, 2022. "Secure big data collection and processing: Framework, means and opportunities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1541-1559, October.
    10. C. J. Skinner, 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 195-212, January.
    11. Favaro, Stefano & Panero, Francesca & Rigon, Tommaso, 2021. "Bayesian nonparametric disclosure risk assessment," LSE Research Online Documents on Economics 117305, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:12:p:2206-2212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.