IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i4p1541-1559.html
   My bibliography  Save this article

Secure big data collection and processing: Framework, means and opportunities

Author

Listed:
  • Li‐Chun Zhang
  • Gustav Haraldsen

Abstract

Statistical disclosure control is important for the dissemination of statistical outputs. There is an increasing need for greater confidentiality protection during data collection and processing by National Statistical Offices. In particular, various transactions and remote sensing signals are examples of useful but very detailed big data that can be highly sensitive. Moreover, possible conflicts of interest may arise for data suppliers who operate commercially. In this paper, we formulate statistical disclosure control for data collection and processing as an optimisation problem. Even when it is difficult to specify and solve the problem unequivocally, the formulation can still provide the basis for comparing different disclosure control methods. We develop a general compartmented system that adapts and implements non‐perturbative methods in the related fields of linking sensitive data and secure computation. We illustrate how the system can be configured to yield variously required tables and microdata sets with sufficiently low disclosure risks.

Suggested Citation

  • Li‐Chun Zhang & Gustav Haraldsen, 2022. "Secure big data collection and processing: Framework, means and opportunities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1541-1559, October.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:4:p:1541-1559
    DOI: 10.1111/rssa.12836
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12836
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. J. Skinner & M. J. Elliot, 2002. "A measure of disclosure risk for microdata," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 855-867, October.
    2. Skinner, Chris J. & Shlomo, Natalie, 2008. "Assessing identification risk in survey microdata using log-linear models," LSE Research Online Documents on Economics 39112, London School of Economics and Political Science, LSE Library.
    3. Skinner, Chris & Shlomo, Natalie, 2008. "Assessing Identification Risk in Survey Microdata Using Log-Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 989-1001.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
    2. Christine M. O'Keefe & James O. Chipperfield, 2013. "A Summary of Attack Methods and Confidentiality Protection Measures for Fully Automated Remote Analysis Systems," International Statistical Review, International Statistical Institute, vol. 81(3), pages 426-455, December.
    3. Favaro, Stefano & Panero, Francesca & Rigon, Tommaso, 2021. "Bayesian nonparametric disclosure risk assessment," LSE Research Online Documents on Economics 117305, London School of Economics and Political Science, LSE Library.
    4. Shlomo, Natalie & Skinner, Chris, 2022. "Measuring risk of re-identification in microdata: state-of-the art and new directions," LSE Research Online Documents on Economics 117168, London School of Economics and Political Science, LSE Library.
    5. Drechsler, Jörg & Reiter, Jerome P., 2011. "An empirical evaluation of easily implemented, nonparametric methods for generating synthetic datasets," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3232-3243, December.
    6. Eurosystem Household Finance and Consumption Network, 2013. "The Eurosystem Household Finance and Consumption Survey - Methodological report," Statistics Paper Series 1, European Central Bank.
    7. Sergio I. Prada & Claudia González-Martínez & Joshua Borton & Johannes Fernandes-Huessy & Craig Holden & Elizabeth Hair & and Tim Mulcahy, 2011. "Avoiding Disclosure of Individually Identifiable Health Information," SAGE Open, , vol. 1(3), pages 21582440114, October.
    8. Krenzke Tom & Gentleman Jane F. & Li Jianzhu & Moriarity Chris, 2013. "Addressing Disclosure Concerns and Analysis Demands in a Real-Time Online Analytic System," Journal of Official Statistics, Sciendo, vol. 29(1), pages 99-124, March.
    9. Iwona Bąk & Katarzyna Cheba, 2022. "Green Transformation: Applying Statistical Data Analysis to a Systematic Literature Review," Energies, MDPI, vol. 16(1), pages 1-22, December.
    10. Prada, Sergio I & Gonzalez, Claudia & Borton, Joshua & Fernandes-Huessy, Johannes & Holden, Craig & Hair, Elizabeth & Mulcahy, Tim, 2011. "Avoiding disclosure of individually identifiable health information: a literature review," MPRA Paper 35463, University Library of Munich, Germany.
    11. Cinzia Carota & Maurizio Filippone & Silvia Polettini, 2022. "Assessing Bayesian Semi‐Parametric Log‐Linear Models: An Application to Disclosure Risk Estimation," International Statistical Review, International Statistical Institute, vol. 90(1), pages 165-183, April.
    12. Chipperfield James O., 2014. "Disclosure-Protected Inference with Linked Microdata Using a Remote Analysis Server," Journal of Official Statistics, Sciendo, vol. 30(1), pages 123-146, March.
    13. Natalie Shlomo & Chris Skinner, 2022. "Measuring risk of re‐identification in microdata: State‐of‐the art and new directions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1644-1662, October.
    14. John M. Abowd & Ian M. Schmutte, 2015. "Economic Analysis and Statistical Disclosure Limitation," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 50(1 (Spring), pages 221-293.
    15. Reiter, Jerome P. & Drechsler, Jörg, 2007. "Releasing multiply-imputed synthetic data generated in two stages to protect confidentiality," IAB-Discussion Paper 200720, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    16. Skinner, Chris J., 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," LSE Research Online Documents on Economics 39105, London School of Economics and Political Science, LSE Library.
    17. C. J. Skinner, 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 195-212, January.
    18. Duncan Smith, 2020. "Re‐identification in the Absence of Common Variables for Matching," International Statistical Review, International Statistical Institute, vol. 88(2), pages 354-379, August.
    19. Tapan K. Nayak & Samson A. Adeshiyan, 2016. "On Invariant Post-randomization for Statistical Disclosure Control," International Statistical Review, International Statistical Institute, vol. 84(1), pages 26-42, April.
    20. Yue Lin & Ningchuan Xiao, 2023. "Assessing the Impact of Differential Privacy on Population Uniques in Geographically Aggregated Data: The Case of the 2020 U.S. Census," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 42(5), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:4:p:1541-1559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.