IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v64y2002i4p855-867.html
   My bibliography  Save this article

A measure of disclosure risk for microdata

Author

Listed:
  • C. J. Skinner
  • M. J. Elliot

Abstract

Summary. Protection against disclosure is important for statistical agencies releasing microdata files from sample surveys. Simple measures of disclosure risk can provide useful evidence to support decisions about release. We propose a new measure of disclosure risk: the probability that a unique match between a microdata record and a population unit is correct. We argue that this measure has at least two advantages. First, we suggest that it may be a more realistic measure of risk than two measures that are currently used with census data. Second, we show that consistent inference (in a specified sense) may be made about this measure from sample data without strong modelling assumptions. This is a surprising finding, in its contrast with the properties of the two ‘similar’ established measures. As a result, this measure has potentially useful applications to sample surveys. In addition to obtaining a simple consistent predictor of the measure, we propose a simple variance estimator and show that it is consistent. We also consider the extension of inference to allow for certain complex sampling schemes. We present a numerical study based on 1991 census data for about 450 000 enumerated individuals in one area of Great Britain. We show that the theoretical results on the properties of the point predictor of the measure of risk and its variance estimator hold to a good approximation for these data.

Suggested Citation

  • C. J. Skinner & M. J. Elliot, 2002. "A measure of disclosure risk for microdata," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 855-867, October.
  • Handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:855-867
    DOI: 10.1111/1467-9868.00365
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00365
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Catherine Marsh & Chris Skinner & Sara Arber & Bruce Penhale & Stan Openshaw & John Hobcraft & Denise Lievesley & Nigel Walford, 1991. "The Case for Samples of Anonymized Records from the 1991 Census," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 154(2), pages 305-340, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tapan K. Nayak & Samson A. Adeshiyan, 2016. "On Invariant Post-randomization for Statistical Disclosure Control," International Statistical Review, International Statistical Institute, vol. 84(1), pages 26-42, April.
    2. C. J. Skinner, 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 195-212, January.
    3. Skinner, C.J. & Shlomo, N., 2012. "Estimating frequencies of frequencies in finite populations," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2206-2212.
    4. Duncan Smith, 2020. "Re‐identification in the Absence of Common Variables for Matching," International Statistical Review, International Statistical Institute, vol. 88(2), pages 354-379, August.
    5. Reiter, Jerome P. & Drechsler, Jörg, 2007. "Releasing multiply-imputed synthetic data generated in two stages to protect confidentiality," IAB-Discussion Paper 200720, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    6. Shlomo, Natalie & Skinner, Chris, 2022. "Measuring risk of re-identification in microdata: state-of-the art and new directions," LSE Research Online Documents on Economics 117168, London School of Economics and Political Science, LSE Library.
    7. James Jackson & Robin Mitra & Brian Francis & Iain Dove, 2022. "Using saturated count models for user‐friendly synthesis of large confidential administrative databases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1613-1643, October.
    8. Favaro, Stefano & Panero, Francesca & Rigon, Tommaso, 2021. "Bayesian nonparametric disclosure risk assessment," LSE Research Online Documents on Economics 117305, London School of Economics and Political Science, LSE Library.
    9. Christine M. O'Keefe & James O. Chipperfield, 2013. "A Summary of Attack Methods and Confidentiality Protection Measures for Fully Automated Remote Analysis Systems," International Statistical Review, International Statistical Institute, vol. 81(3), pages 426-455, December.
    10. Skinner, Chris J., 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," LSE Research Online Documents on Economics 39105, London School of Economics and Political Science, LSE Library.
    11. Li‐Chun Zhang & Gustav Haraldsen, 2022. "Secure big data collection and processing: Framework, means and opportunities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1541-1559, October.
    12. Natalie Shlomo & Chris Skinner, 2022. "Measuring risk of re‐identification in microdata: State‐of‐the art and new directions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1644-1662, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D Martin & M L Senior & H C W L Williams, 1994. "On Measures of Deprivation and the Spatial Allocation of Resources for Primary Health Care," Environment and Planning A, , vol. 26(12), pages 1911-1929, December.
    2. Bender, Stefan & Hilzendegen, Jürgen, 1995. "Die IAB-Beschäftigtenstrichprobe als scientific use file," Mitteilungen aus der Arbeitsmarkt- und Berufsforschung, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 28(1), pages 76-95.
    3. Skinner, Chris J., 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," LSE Research Online Documents on Economics 39105, London School of Economics and Political Science, LSE Library.
    4. C. J. Skinner, 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 195-212, January.
    5. Walter Mãœller & Uwe Blien & Heike Wirth, 1995. "Identification Risks of Microdata," Sociological Methods & Research, , vol. 24(2), pages 131-157, November.
    6. Bender, Stefan & Hilzendegen, Jürgen, 1995. "Die IAB-Beschäftigtenstrichprobe als scientific use file," Mitteilungen aus der Arbeitsmarkt- und Berufsforschung, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 28(1), pages 76-95.
    7. Bender, Stefan & Hilzendegen, Jürgen, 1995. "Die IAB-Beschäftigtenstrichprobe als scientific use file," Mitteilungen aus der Arbeitsmarkt- und Berufsforschung, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 28(1), pages 76-95.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:855-867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.