IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i2p207-211.html
   My bibliography  Save this article

A revision of Kimberling's results -- With an application to max-infinite divisibility of some Archimedean copulas

Author

Listed:
  • Ressel, Paul

Abstract

In his paper A probabilistic interpretation of complete monotonicity Kimberling (1974) proves several remarkable results connecting multivariate distribution functions and their marginals via completely monotone functions on the half-line. These have been taken up more recently in particular in connection with so-called Archimedean copulas; see for example Nelsen (2006). We present in this paper much shorter proofs of more general versions of the two main theorems in Kimberling (1974), and apply this to show the max-infinite divisibility of some known Archimedean copulas.

Suggested Citation

  • Ressel, Paul, 2011. "A revision of Kimberling's results -- With an application to max-infinite divisibility of some Archimedean copulas," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 207-211, February.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:2:p:207-211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00326-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genest, Christian & Rivest, Louis-Paul, 1989. "A characterization of gumbel's family of extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 8(3), pages 207-211, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ressel, Paul, 2012. "Functions operating on multivariate distribution and survival functions—With applications to classical mean-values and to copulas," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 55-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2009-014 is not listed on IDEAS
    2. Hashorva, Enkelejd & Rullière, Didier, 2020. "Asymptotic domination of sample maxima," Statistics & Probability Letters, Elsevier, vol. 160(C).
    3. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    4. Mainik Georg & Rüschendorf Ludger, 2012. "Ordering of multivariate risk models with respect to extreme portfolio losses," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 73-106, March.
    5. Bücher, Axel & Dette, Holger & Volgushev, Stanislav, 2012. "A test for Archimedeanity in bivariate copula models," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 121-132.
    6. Mazo, Gildas & Girard, Stéphane & Forbes, Florence, 2015. "A class of multivariate copulas based on products of bivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 363-376.
    7. Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
    8. Ressel Paul, 2022. "Stable tail dependence functions – some basic properties," Dependence Modeling, De Gruyter, vol. 10(1), pages 225-235, January.
    9. Yong Ma & Zhengjun Zhang & Weiguo Zhang & Weidong Xu, 2015. "Evaluating the Default Risk of Bond Portfolios with Extreme Value Theory," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 647-668, April.
    10. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    11. Ressel, Paul, 2013. "Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 246-256.
    12. Tankov, Peter, 2016. "Tails of weakly dependent random vectors," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 73-86.
    13. Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.
    14. Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Discussion Paper 2004-91, Tilburg University, Center for Economic Research.
    15. Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Other publications TiSEM 3e837d24-e733-407c-bfaa-f, Tilburg University, School of Economics and Management.
    16. Dutfoy Anne & Parey Sylvie & Roche Nicolas, 2014. "Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-19, June.
    17. Fan Yang & Yi Zhang, 2024. "Asymptotics of Sum of Heavy-tailed Risks with Copulas," Papers 2411.09657, arXiv.org.
    18. Hofert, Marius & Huser, Raphaël & Prasad, Avinash, 2018. "Hierarchical Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 195-211.
    19. Yongzhao Chen & Ka Chun Cheung & Sheung Chi Phillip Yam & Fei Lung Yuen & Jia Zeng, 2023. "On the Diversification Effect in Solvency II for Extremely Dependent Risks," Risks, MDPI, vol. 11(8), pages 1-22, August.
    20. Mai, Jan-Frederik, 2018. "Extreme-value copulas associated with the expected scaled maximum of independent random variables," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 50-61.
    21. repec:hum:wpaper:sfb649dp2010-022 is not listed on IDEAS
    22. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:2:p:207-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.