IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i1p140-145.html
   My bibliography  Save this article

Test to distinguish a Brownian motion from a Brownian bridge using Polya tree process

Author

Listed:
  • Bharath, Karthik
  • Dey, Dipak K.

Abstract

The problem of distinguishing a Brownian bridge from a Brownian motion, both with possible drift, on the closed unit interval, is investigated via a pair of hypothesis tests. The first, tests for observations obtained at n discrete time points to be arising from a Brownian bridge with drift by embedding the Brownian bridge into a mixture of Polya trees which represents the non-parametric alternative. The second test, tests in an identical manner, for the observations to be coming from a Brownian motion with drift. The Bayes factors for the two tests are derived and then combined to obtain the Bayes factor for the test to distinguish between the two Gaussian processes. The Tierney-Kadane approximation of the Bayes factor is derived with an error approximation of order O(n-4).

Suggested Citation

  • Bharath, Karthik & Dey, Dipak K., 2011. "Test to distinguish a Brownian motion from a Brownian bridge using Polya tree process," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 140-145, January.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:1:p:140-145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00282-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Berger J. O & Guglielmi A., 2001. "Bayesian and Conditional Frequentist Testing of a Parametric Model Versus Nonparametric Alternatives," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 174-184, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angela Schörgendorfer & Adam J. Branscum & Timothy E. Hanson, 2013. "A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data," Biometrics, The International Biometric Society, vol. 69(2), pages 508-519, June.
    2. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.
    3. Ma, Zichen & Hanson, Timothy E., 2020. "Bayesian nonparametric test for independence between random vectors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luai Al-Labadi, 2021. "The two-sample problem via relative belief ratio," Computational Statistics, Springer, vol. 36(3), pages 1791-1808, September.
    2. Kelter, Riko, 2022. "Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    3. Rafael Carvalho Ceregatti & Rafael Izbicki & Luis Ernesto Bueno Salasar, 2021. "WIKS: a general Bayesian nonparametric index for quantifying differences between two populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 274-291, March.
    4. Barrientos, Andrés F. & Canale, Antonio, 2021. "A Bayesian goodness-of-fit test for regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    5. Zhang, Jianjun & Qiu, Chunjuan & Wu, Xianyi, 2018. "Bayesian ratemaking with common effects modeled by mixture of Polya tree processes," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 87-94.
    6. Argiento, Raffaele & Guglielmi, Alessandra & Pievatolo, Antonio, 2010. "Bayesian density estimation and model selection using nonparametric hierarchical mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 816-832, April.
    7. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.
    8. Ma, Zichen & Hanson, Timothy E., 2020. "Bayesian nonparametric test for independence between random vectors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    9. Surya T. Tokdar & Ryan Martin, 2021. "Bayesian Test of Normality Versus a Dirichlet Process Mixture Alternative," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 66-96, May.
    10. Jara, Alejandro & Jose Garcia-Zattera, Maria & Lesaffre, Emmanuel, 2007. "A Dirichlet process mixture model for the analysis of correlated binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5402-5415, July.
    11. Jianjun Zhang & Lei Yang & Xianyi Wu, 2019. "Polya tree priors and their estimation with multi-group data," Statistical Papers, Springer, vol. 60(3), pages 849-875, June.
    12. Luai Al Labadi & Mahmoud Zarepour, 2014. "Goodness-of-fit tests based on the distance between the Dirichlet process and its base measure," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 341-357, June.
    13. Vaidehi Dixit & Ryan Martin, 2022. "Estimating a Mixing Distribution on the Sphere Using Predictive Recursion," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 596-626, November.
    14. Damien, Paul & Galenko, Alexander & Popova, Elmira & Hanson, Timothy, 2007. "Bayesian semiparametric analysis for a single item maintenance optimization," European Journal of Operational Research, Elsevier, vol. 182(2), pages 794-805, October.
    15. Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
    16. Yang, Mingan & Hanson, Timothy & Christensen, Ronald, 2008. "Nonparametric Bayesian estimation of a bivariate density with interval censored data," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5202-5214, August.
    17. Cinzia Carota, 2006. "Some Faults of the Bayes Factor in Nonparametric Model Selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(1), pages 37-42, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:1:p:140-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.