IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v26y2014i2p341-357.html
   My bibliography  Save this article

Goodness-of-fit tests based on the distance between the Dirichlet process and its base measure

Author

Listed:
  • Luai Al Labadi
  • Mahmoud Zarepour

Abstract

The Dirichlet process is a fundamental tool in studying Bayesian nonparametric inference. The Dirichlet process has several sum representations, where each one of these representations highlights some aspects of this important process. In this paper, we use the sum representations of the Dirichlet process to derive explicit expressions that are used to calculate Kolmogorov, Lévy, and Cramér-von Mises distances between the Dirichlet process and its base measure. The derived expressions of the distance are used to select a proper value for the concentration parameter of the Dirichlet process. These tools are also used in a goodness-of-fit test. Illustrative examples and simulation results are included.

Suggested Citation

  • Luai Al Labadi & Mahmoud Zarepour, 2014. "Goodness-of-fit tests based on the distance between the Dirichlet process and its base measure," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 341-357, June.
  • Handle: RePEc:taf:gnstxx:v:26:y:2014:i:2:p:341-357
    DOI: 10.1080/10485252.2013.856431
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2013.856431
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2013.856431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2006. "Conjugacy as a Distinctive Feature of the Dirichlet Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 105-120, March.
    2. Berger J. O & Guglielmi A., 2001. "Bayesian and Conditional Frequentist Testing of a Parametric Model Versus Nonparametric Alternatives," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 174-184, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Carvalho Ceregatti & Rafael Izbicki & Luis Ernesto Bueno Salasar, 2021. "WIKS: a general Bayesian nonparametric index for quantifying differences between two populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 274-291, March.
    2. Luai Al Labadi & Ibrahim Abdelrazeq, 2017. "On functional central limit theorems of Bayesian nonparametric priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(2), pages 215-229, June.
    3. Luai Al Labadi & Mahmoud Zarepour, 2018. "On Approximations of the Beta Process in Latent Feature Models: Point Processes Approach," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 59-79, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Argiento, Raffaele & Guglielmi, Alessandra & Pievatolo, Antonio, 2010. "Bayesian density estimation and model selection using nonparametric hierarchical mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 816-832, April.
    2. Bharath, Karthik & Dey, Dipak K., 2011. "Test to distinguish a Brownian motion from a Brownian bridge using Polya tree process," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 140-145, January.
    3. Kolossiatis, M. & Griffin, J.E. & Steel, M.F.J., 2011. "Modeling overdispersion with the normalized tempered stable distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2288-2301, July.
    4. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    5. Luai Al-Labadi, 2021. "The two-sample problem via relative belief ratio," Computational Statistics, Springer, vol. 36(3), pages 1791-1808, September.
    6. Kelter, Riko, 2022. "Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    7. Antonio Lijoi & Igor Pruenster, 2009. "Distributional Properties of means of Random Probability Measures," ICER Working Papers - Applied Mathematics Series 22-2009, ICER - International Centre for Economic Research.
    8. Canale, Antonio & Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2023. "Inner spike and slab Bayesian nonparametric models," Econometrics and Statistics, Elsevier, vol. 27(C), pages 120-135.
    9. Rafael Carvalho Ceregatti & Rafael Izbicki & Luis Ernesto Bueno Salasar, 2021. "WIKS: a general Bayesian nonparametric index for quantifying differences between two populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 274-291, March.
    10. Antonio Lijoi & Igor Prunster, 2009. "Models beyond the Dirichlet process," Quaderni di Dipartimento 103, University of Pavia, Department of Economics and Quantitative Methods.
    11. El-Dakkak, Omar & Peccati, Giovanni & Prünster, Igor, 2014. "Exchangeable Hoeffding decompositions over finite sets: A combinatorial characterization and counterexamples," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 51-64.
    12. Barrientos, Andrés F. & Canale, Antonio, 2021. "A Bayesian goodness-of-fit test for regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    13. Zhang, Jianjun & Qiu, Chunjuan & Wu, Xianyi, 2018. "Bayesian ratemaking with common effects modeled by mixture of Polya tree processes," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 87-94.
    14. Chen, Yuhui & Hanson, Timothy E., 2014. "Bayesian nonparametric k-sample tests for censored and uncensored data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 335-346.
    15. Ma, Zichen & Hanson, Timothy E., 2020. "Bayesian nonparametric test for independence between random vectors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    16. J. E. Griffin & M. Kolossiatis & M. F. J. Steel, 2013. "Comparing distributions by using dependent normalized random-measure mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 499-529, June.
    17. Surya T. Tokdar & Ryan Martin, 2021. "Bayesian Test of Normality Versus a Dirichlet Process Mixture Alternative," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 66-96, May.
    18. McCulloch, James, 2012. "Fractal market time," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 686-701.
    19. Antonio Lijoi & Bernardo Nipoti & Igor Prünster, 2013. "Dependent mixture models: clustering and borrowing information," DEM Working Papers Series 046, University of Pavia, Department of Economics and Management.
    20. Ali Karimnezhad & Mahmoud Zarepour, 2020. "A general guide in Bayesian and robust Bayesian estimation using Dirichlet processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 321-346, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:26:y:2014:i:2:p:341-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.