IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v59y2002i1p153-161.html
   My bibliography  Save this article

Maximum likelihood estimation of the fractional differencing parameter in an ARFIMA model using wavelets

Author

Listed:
  • Tse, Y.K.
  • Anh, V.V.
  • Tieng, Q.

Abstract

In this paper, we examine the finite-sample properties of the approximate maximum likelihood estimate (MLE) of the fractional differencing parameter d in an ARFIMA(p, d, q) model based on the wavelet coefficients. Ignoring wavelet coefficients of higher order of resolution, the remaining wavelet coefficients approximate a sample of independently and identically distributed normal variates with homogeneous variance within each level. The approximate MLE performs satisfactorily and provides a robust estimate for which the short memory component need not be specified.

Suggested Citation

  • Tse, Y.K. & Anh, V.V. & Tieng, Q., 2002. "Maximum likelihood estimation of the fractional differencing parameter in an ARFIMA model using wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(1), pages 153-161.
  • Handle: RePEc:eee:matcom:v:59:y:2002:i:1:p:153-161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475401004037
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davidson, Russell & Labys, Walter C & Lesourd, Jean-Baptiste, 1998. "Wavelet Analysis of Commodity Price Behavior," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 103-128, April.
    2. Pan, Zuohong & Wang, Xiaodi, 1998. "A Stochastic Nonlinear Regression Estimator Using Wavelets," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 89-102, April.
    3. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    2. Han, Lili & Wu, Fangxiang & Sheng, Jie & Ding, Feng, 2012. "Two recursive least squares parameter estimation algorithms for multirate multiple-input systems by using the auxiliary model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 777-789.
    3. Cai, Chunhao & Cheng, Xuwen & Xiao, Weilin & Wu, Xiang, 2019. "Parameter identification for mixed fractional Brownian motions with the drift parameter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    4. Chen, Feiyan & Ding, Feng & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Data filtering based multi-innovation extended gradient method for controlled autoregressive autoregressive moving average systems using the maximum likelihood principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 53-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Shinn-Juh & Stevenson Maxwell, 2001. "Wavelet Analysis of the Cost-of-Carry Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-17, April.
    2. Taylor, Larry W., 2009. "Using the Haar wavelet transform in the semiparametric specification of time series," Economic Modelling, Elsevier, vol. 26(2), pages 392-403, March.
    3. Huang, Shian-Chang, 2011. "Wavelet-based multi-resolution GARCH model for financial spillover effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2529-2539.
    4. Kim Sangbae & In Francis Haeuck, 2003. "The Relationship Between Financial Variables and Real Economic Activity: Evidence From Spectral and Wavelet Analyses," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(4), pages 1-18, December.
    5. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    6. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    7. Christian M. Hafner, 2012. "Cross-correlating wavelet coefficients with applications to high-frequency financial time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1363-1379, December.
    8. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    9. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    10. repec:jss:jstsof:12:i08 is not listed on IDEAS
    11. Porto, Rogério F. & Morettin, Pedro A. & Aubin, Elisete C.Q., 2008. "Wavelet regression with correlated errors on a piecewise Hölder class," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2739-2743, November.
    12. Capobianco Enrico & Marras Elisabetta & Travaglione Antonella, 2011. "Multiscale Characterization of Signaling Network Dynamics through Features," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, November.
    13. Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
    14. Christophe Chesneau & Fabien Navarro, 2017. "On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator," Working Papers 2017-68, Center for Research in Economics and Statistics.
    15. Capobianco, Enrico, 2004. "Effective decorrelation and space dimensionality reduction of multiscaling volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 340-346.
    16. Haven, Emmanuel & Liu, Xiaoquan & Ma, Chenghu & Shen, Liya, 2009. "Revealing the implied risk-neutral MGF from options: The wavelet method," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 692-709, March.
    17. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    18. Xiaojie Xu, 2018. "Intraday price information flows between the CSI300 and futures market: an application of wavelet analysis," Empirical Economics, Springer, vol. 54(3), pages 1267-1295, May.
    19. Young Truong & Prakash Patil, 2001. "Asymptotics for Wavelet Based Estimates of Piecewise Smooth Regression for Stationary Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 159-178, March.
    20. Sam Efromovich & Jiayi Wu, 2018. "Wavelet Analysis of Big Data Contaminated by Large Noise in an fMRI Study of Neuroplasticity," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1381-1402, December.
    21. Kovac, Arne & Silverman, Bernard W., 1998. "Extending the scope of wavelet regression methods by coefficient-dependent thresholding," Technical Reports 1998,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:59:y:2002:i:1:p:153-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.