IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i7-8p739-746.html
   My bibliography  Save this article

Comparing extreme models when the sign of the extreme value index is known

Author

Listed:
  • Li, Deyuan
  • Peng, Liang

Abstract

In the literature on analyzing extremes, both generalized Pareto distributions and Pareto distributions are employed to infer the tail of a distribution with a known positive extreme value index. Similar studies exist for a known negative extreme value index. Intuitively, one should not employ the generalized Pareto distribution in the case of knowing the sign of the extreme value index. In this work, we show that fitting a generalized Pareto distribution is equivalent to the model in Hall (1982) in the case of a negative extreme value index, in both improving the rate of convergence and including the bias term of the asymptotic results of that reference. When the extreme value index is known to be positive, we show that fitting a generalized Pareto distribution may be preferred in some cases determined by a so-called second-order parameter and the extreme value index itself.

Suggested Citation

  • Li, Deyuan & Peng, Liang, 2010. "Comparing extreme models when the sign of the extreme value index is known," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 739-746, April.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:7-8:p:739-746
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00009-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. De Haan & L. Peng, 1998. "Comparison of tail index estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(1), pages 60-70, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matheus Henrique Junqueira Saldanha & Adriano Kamimura Suzuki, 2023. "On dealing with the unknown population minimum in parametric inference," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 509-535, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    2. Igor Fedotenkov, 2013. "A bootstrap method to test for the existence of finite moments," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 315-322, June.
    3. Ghosh, Souvik & Resnick, Sidney, 2010. "A discussion on mean excess plots," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1492-1517, August.
    4. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    5. P. Lai & Stephen Lee, 2013. "Estimation of central shapes of error distributions in linear regression problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 105-124, February.
    6. Geluk, J. L. & Peng, Liang, 2000. "An adaptive optimal estimate of the tail index for MA(l) time series," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 217-227, February.
    7. Vygantas Paulauskas & Marijus Vaičiulis, 2017. "A class of new tail index estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 461-487, April.
    8. Gomes, M. Ivette & Pestana, Dinis & Caeiro, Frederico, 2009. "A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 295-303, February.
    9. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
    10. Beirlant, J. & Joossens, E. & Segers, J., 2005. "Unbiased Tail Estimation by an Extension of the Generalized Pareto Distribution," Other publications TiSEM cfb08408-0775-4936-8f1f-b, Tilburg University, School of Economics and Management.
    11. Hashorva, Enkelejd, 2010. "On the residual dependence index of elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1070-1078, July.
    12. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    13. Yongcheng Qi, 2010. "On the tail index of a heavy tailed distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 277-298, April.
    14. Beirlant, J. & Bouquiaux, C. & Werker, B.J.M., 2006. "Semiparametric lower bounds for tail-index estimation," Other publications TiSEM 4f434455-72a7-4b68-b972-d, Tilburg University, School of Economics and Management.
    15. A. Dematteo & S. Clémençon, 2016. "On tail index estimation based on multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 152-176, March.
    16. Haeusler, E. & Segers, J., 2005. "Assessing Confidence Intervals for the Tail Index by Edgeworth Expansions for the Hill Estimator," Discussion Paper 2005-129, Tilburg University, Center for Economic Research.
    17. Cuntz, A. & Haeusler, E. & Segers, J.J.J., 2003. "Edgeworth Expansions for the Distribution Function of the Hill Estimator," Other publications TiSEM 345501c7-c622-4b04-8d27-9, Tilburg University, School of Economics and Management.
    18. Li, Yizeng & Qi, Yongcheng, 2019. "Adjusted empirical likelihood method for the tail index of a heavy-tailed distribution," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 50-58.
    19. Wendy Shinyie & Noriszura Ismail & Abdul Jemain, 2014. "Semi-parametric Estimation Based on Second Order Parameter for Selecting Optimal Threshold of Extreme Rainfall Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3489-3514, September.
    20. Pere, Jaakko & Ilmonen, Pauliina & Viitasaari, Lauri, 2024. "On extreme quantile region estimation under heavy-tailed elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:7-8:p:739-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.