IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v152y2019icp50-58.html
   My bibliography  Save this article

Adjusted empirical likelihood method for the tail index of a heavy-tailed distribution

Author

Listed:
  • Li, Yizeng
  • Qi, Yongcheng

Abstract

Empirical likelihood is a well-known nonparametric method in statistics and has been widely applied in statistical inference. The method has been employed by Lu and Peng (2002) to constructing confidence intervals for the tail index of a heavy-tailed distribution. It is demonstrated in Lu and Peng (2002) that the empirical likelihood-based confidence intervals perform better than confidence intervals based on normal approximation in terms of the coverage probability. In general, the empirical likelihood method can be hindered by its imprecision in the coverage probability when the sample size is small. This may cause a serious undercoverage issue when we apply the empirical likelihood to the tail index as only a very small portion of observations can be used in the estimation of the tail index. In this paper, we employ an adjusted empirical likelihood method, developed by Chen et al. (2008) and Liu and Chen (2010), to constructing confidence intervals of the tail index so as to achieve a better accuracy. We conduct a simulation study to compare the performance of the adjusted empirical likelihood method and the normal approximation method. Our simulation results indicate that the adjusted empirical likelihood method outperforms other methods in terms of the coverage probability and length of confidence intervals. We also apply the adjusted empirical likelihood method to a real data set.

Suggested Citation

  • Li, Yizeng & Qi, Yongcheng, 2019. "Adjusted empirical likelihood method for the tail index of a heavy-tailed distribution," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 50-58.
  • Handle: RePEc:eee:stapro:v:152:y:2019:i:c:p:50-58
    DOI: 10.1016/j.spl.2019.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521930118X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsao, Min, 2004. "A new method of calibration for the empirical loglikelihood ratio," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 305-314, July.
    2. L. De Haan & L. Peng, 1998. "Comparison of tail index estimators," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 52(1), pages 60-70, March.
    3. Paul Embrechts & Sidney Resnick & Gennady Samorodnitsky, 1999. "Extreme Value Theory as a Risk Management Tool," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 30-41.
    4. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    2. Goran Andjelic & Ivana Milosev & Vladimir Djakovic, 2010. "Extreme Value Theory In Emerging Markets," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 55(185), pages 63-106, April - J.
    3. Madhusudan Karmakar, 2013. "Estimation of tail‐related risk measures in the Indian stock market: An extreme value approach," Review of Financial Economics, John Wiley & Sons, vol. 22(3), pages 79-85, September.
    4. Yujuan Qiu, 2024. "Estimation of tail risk measures in finance: Approaches to extreme value mixture modeling," Papers 2407.05933, arXiv.org.
    5. Saša ŽIKOVIÆ & Randall K. FILER, 2013. "Ranking of VaR and ES Models: Performance in Developed and Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(4), pages 327-359, August.
    6. Yongcheng Qi, 2010. "On the tail index of a heavy tailed distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 277-298, April.
    7. Ana-Maria Gavril, 2009. "Exchange Rate Risk: Heads or Tails," Advances in Economic and Financial Research - DOFIN Working Paper Series 35, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    8. Tsourti, Zoi & Panaretos, John, 2004. "Extreme-value analysis of teletraffic data," Computational Statistics & Data Analysis, Elsevier, vol. 45(1), pages 85-103, February.
    9. Tsourti, Zoi & Panaretos, John, 2003. "Extreme Value Index Estimators and Smoothing Alternatives: A Critical Review," MPRA Paper 6390, University Library of Munich, Germany.
    10. Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
    11. Carol Alexander & Sujit Narayanan, 2001. "Option Pricing with Normal Mixture Returns: Modelling Excess Kurtosis and Uncertanity in Volatility," ICMA Centre Discussion Papers in Finance icma-dp2001-10, Henley Business School, University of Reading, revised Dec 2001.
    12. Marimoutou, Velayoudoum & Raggad, Bechir & Trabelsi, Abdelwahed, 2009. "Extreme Value Theory and Value at Risk: Application to oil market," Energy Economics, Elsevier, vol. 31(4), pages 519-530, July.
    13. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    14. Manel Youssef & Lotfi Belkacem & Khaled Mokni, 2015. "Extreme Value Theory and long-memory-GARCH Framework: Application to Stock Market," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(8), pages 371-388, August.
    15. Karmakar, Madhusudan, 2013. "Estimation of tail-related risk measures in the Indian stock market: An extreme value approach," Review of Financial Economics, Elsevier, vol. 22(3), pages 79-85.
    16. Laudagé, Christian & Desmettre, Sascha & Wenzel, Jörg, 2019. "Severity modeling of extreme insurance claims for tariffication," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 77-92.
    17. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    18. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    19. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    20. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:152:y:2019:i:c:p:50-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.