IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i21p2297-2306.html
   My bibliography  Save this article

Memory parameter estimation for long range dependent random fields

Author

Listed:
  • Wang, Lihong

Abstract

The GPH-estimator of spatial long memory parameter is investigated for stationary long memory (long range dependent) random fields observed over a regular lattice point set. Under some mild regularity assumptions, the weak consistency of the estimator is obtained. The finite sample performance of the estimator is discussed through a small simulation study.

Suggested Citation

  • Wang, Lihong, 2009. "Memory parameter estimation for long range dependent random fields," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2297-2306, November.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:21:p:2297-2306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00292-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Hongwen & Lim, Chae Young & Meerschaert, Mark M., 2009. "Local Whittle estimator for anisotropic random fields," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 993-1028, May.
    2. Lin, Guangxing & Chen, Xi & Fu, Zuntao, 2007. "Temporal–spatial diversities of long-range correlation for relative humidity over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 585-594.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, C.Y. & Meerschaert, M.M. & Scheffler, H.-P., 2014. "Parameter estimation for operator scaling random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 172-183.
    2. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    3. Kalamaras, N. & Philippopoulos, K. & Deligiorgi, D. & Tzanis, C.G. & Karvounis, G., 2017. "Multifractal scaling properties of daily air temperature time series," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 38-43.
    4. Siqueira, Erinaldo Leite & Stošić, Tatijana & Bejan, Lucian & Stošić, Borko, 2010. "Correlations and cross-correlations in the Brazilian agrarian commodities and stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2739-2743.
    5. Beran, Jan & Ghosh, Sucharita & Schell, Dieter, 2009. "On least squares estimation for long-memory lattice processes," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2178-2194, November.
    6. Puplinskaitė, Donata & Surgailis, Donatas, 2015. "Scaling transition for long-range dependent Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2256-2271.
    7. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    8. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    9. Robinson, Peter, 2019. "Spatial long memory," LSE Research Online Documents on Economics 102182, London School of Economics and Political Science, LSE Library.
    10. Angela Ferretti & L. Ippoliti & P. Valentini & R. J. Bhansali, 2023. "Long memory conditional random fields on regular lattices," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    11. Hira Koul & Nao Mimoto & Donatas Surgailis, 2016. "A goodness-of-fit test for marginal distribution of linear random fields with long memory," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 165-193, February.
    12. Yuan, Naiming & Fu, Zuntao & Mao, Jiangyu, 2010. "Different scaling behaviors in daily temperature records over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4087-4095.
    13. Lihong Wang & Jinde Wang, 2014. "Wavelet estimation of the memory parameter for long range dependent random fields," Statistical Papers, Springer, vol. 55(4), pages 1145-1158, November.
    14. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Scaling transition for nonlinear random fields with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2751-2779.
    15. Didier, Gustavo & Meerschaert, Mark M. & Pipiras, Vladas, 2018. "Domain and range symmetries of operator fractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 39-78.
    16. Surgailis, Donatas, 2020. "Scaling transition and edge effects for negatively dependent linear random fields on Z2," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7518-7546.
    17. Lu, Feiyu & Yuan, Naiming & Fu, Zuntao & Mao, Jiangyu, 2012. "Universal scaling behaviors of meteorological variables’ volatility and relations with original records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4953-4962.
    18. Mohti, Wahbeeah & Dionísio, Andreia & Vieira, Isabel & Ferreira, Paulo, 2019. "Financial contagion analysis in frontier markets: Evidence from the US subprime and the Eurozone debt crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1388-1398.
    19. Nicolis, Orietta & Ramírez-Cobo, Pepa & Vidakovic, Brani, 2011. "2D wavelet-based spectra with applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 738-751, January.
    20. Burnecki, Krzysztof & Sikora, Grzegorz, 2017. "Identification and validation of stable ARFIMA processes with application to UMTS data," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 456-466.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:21:p:2297-2306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.