IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p738-751.html
   My bibliography  Save this article

2D wavelet-based spectra with applications

Author

Listed:
  • Nicolis, Orietta
  • Ramírez-Cobo, Pepa
  • Vidakovic, Brani

Abstract

A wavelet-based spectral method for estimating the (directional) Hurst parameter in isotropic and anisotropic non-stationary fractional Gaussian fields is proposed. The method can be applied to self-similar images and, in general, to d-dimensional data which scale. In the application part, the problems of denoising 2D fractional Brownian fields and classification of digital mammograms to benign and malignant are considered. In the first application, a Bayesian inference calibrated by information from the wavelet-spectral domain is used to separate the signal from the noise. In the second application, digital mammograms are classified into benign and malignant based on the directional Hurst exponents which prove to be discriminatory summaries.

Suggested Citation

  • Nicolis, Orietta & Ramírez-Cobo, Pepa & Vidakovic, Brani, 2011. "2D wavelet-based spectra with applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 738-751, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:738-751
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00265-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Hongwen & Lim, Chae Young & Meerschaert, Mark M., 2009. "Local Whittle estimator for anisotropic random fields," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 993-1028, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeliz Karaca & Carlo Cattani & Majaz Moonis & Şengül Bayrak, 2018. "Stroke Subtype Clustering by Multifractal Bayesian Denoising with Fuzzy Means and -Means Algorithms," Complexity, Hindawi, vol. 2018, pages 1-15, April.
    2. Ramírez-Cobo, Pepa & Vidakovic, Brani, 2013. "A 2D wavelet-based multiscale approach with applications to the analysis of digital mammograms," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 71-81.
    3. Bae, Suk Joo & Mun, Byeong Min & Chang, Woojin & Vidakovic, Brani, 2019. "Condition monitoring of a steam turbine generator using wavelet spectrum based control chart," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 13-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, C.Y. & Meerschaert, M.M. & Scheffler, H.-P., 2014. "Parameter estimation for operator scaling random fields," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 172-183.
    2. Hira Koul & Nao Mimoto & Donatas Surgailis, 2016. "A goodness-of-fit test for marginal distribution of linear random fields with long memory," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 165-193, February.
    3. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    4. Lihong Wang & Jinde Wang, 2014. "Wavelet estimation of the memory parameter for long range dependent random fields," Statistical Papers, Springer, vol. 55(4), pages 1145-1158, November.
    5. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Scaling transition for nonlinear random fields with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2751-2779.
    6. Didier, Gustavo & Meerschaert, Mark M. & Pipiras, Vladas, 2018. "Domain and range symmetries of operator fractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 39-78.
    7. Surgailis, Donatas, 2020. "Scaling transition and edge effects for negatively dependent linear random fields on Z2," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7518-7546.
    8. Burnecki, Krzysztof & Sikora, Grzegorz, 2017. "Identification and validation of stable ARFIMA processes with application to UMTS data," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 456-466.
    9. Beran, Jan & Ghosh, Sucharita & Schell, Dieter, 2009. "On least squares estimation for long-memory lattice processes," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2178-2194, November.
    10. Puplinskaitė, Donata & Surgailis, Donatas, 2015. "Scaling transition for long-range dependent Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2256-2271.
    11. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    12. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    13. Robinson, Peter, 2019. "Spatial long memory," LSE Research Online Documents on Economics 102182, London School of Economics and Political Science, LSE Library.
    14. Angela Ferretti & L. Ippoliti & P. Valentini & R. J. Bhansali, 2023. "Long memory conditional random fields on regular lattices," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    15. Wang, Lihong, 2009. "Memory parameter estimation for long range dependent random fields," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2297-2306, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:738-751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.