IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i1p38-43.html
   My bibliography  Save this article

Estimation of the autoregressive operator by wavelet packets

Author

Listed:
  • Laukaitis, Algirdas
  • Vasilecas, Olegas
  • Laukaitis, Ricardas

Abstract

In this paper, we suggest to use wavelet packet bases as an alternative to the widely used principal component analysis in an estimation of the functional autoregressive processes. By extending the notion of the so-called non-standard form of operators representation, we search for the "best" basis on a criterion of highest correlation between pairs of wavelet packet coefficients.

Suggested Citation

  • Laukaitis, Algirdas & Vasilecas, Olegas & Laukaitis, Ricardas, 2009. "Estimation of the autoregressive operator by wavelet packets," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 38-43, January.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:1:p:38-43
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00333-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    2. C. Abraham & G. Biau & B. Cadre, 2006. "On the Kernel Rule for Function Classification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(3), pages 619-633, September.
    3. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    4. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    5. Ying Chen & Wee Song Chua & Wolfgang Karl Härdle, 2019. "Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1473-1489, September.
    6. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    7. Antoniadis, Anestis & Paparoditis, Efstathios & Sapatinas, Theofanis, 2009. "Bandwidth selection for functional time series prediction," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 733-740, March.
    8. repec:hum:wpaper:sfb649dp2016-025 is not listed on IDEAS
    9. Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
    10. Wafaa Benyelles & Tahar Mourid, 2012. "On a minimum distance estimate of the period in functional autoregressive processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1703-1718, February.
    11. Berhoune, Kamila & Bensmain, Nawel, 2018. "Sieves estimator of functional autoregressive process," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 60-69.
    12. Ana M. Aguilera & Manuel Escabias & Francisco A. Ocaña & Mariano J. Valderrama, 2015. "Functional Wavelet-Based Modelling of Dependence Between Lupus and Stress," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 1015-1028, December.
    13. Ying Chen & Bo Li, 2017. "An Adaptive Functional Autoregressive Forecast Model to Predict Electricity Price Curves," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 371-388, July.
    14. Xu, Meng & Li, Jialiang & Chen, Ying, 2017. "Varying coefficient functional autoregressive model with application to the U.S. treasuries," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 168-183.
    15. Horváth, Lajos & Husková, Marie & Kokoszka, Piotr, 2010. "Testing the stability of the functional autoregressive process," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 352-367, February.
    16. Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.
    17. Aue, Alexander & Gabrys, Robertas & Horváth, Lajos & Kokoszka, Piotr, 2009. "Estimation of a change-point in the mean function of functional data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2254-2269, November.
    18. Caponera, Alessia & Panaretos, Victor M., 2022. "On the rate of convergence for the autocorrelation operator in functional autoregression," Statistics & Probability Letters, Elsevier, vol. 189(C).
    19. Boukhiar, Souad & Mourid, Tahar, 2022. "Resolvent estimators for functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    20. Laukaitis, Algirdas, 2008. "Functional data analysis for cash flow and transactions intensity continuous-time prediction using Hilbert-valued autoregressive processes," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1607-1614, March.
    21. Devin Didericksen & Piotr Kokoszka & Xi Zhang, 2012. "Empirical properties of forecasts with the functional autoregressive model," Computational Statistics, Springer, vol. 27(2), pages 285-298, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:1:p:38-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.