IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i1p132-155.html
   My bibliography  Save this article

Non parametric estimation for random walks in random environment

Author

Listed:
  • Diel, Roland
  • Lerasle, Matthieu

Abstract

We investigate the problem of estimating the cumulative distribution function (c.d.f.) F of a distribution ν from the observation of one trajectory of the random walk in i.i.d. random environment with distribution ν on Z. We first estimate the moments of ν, then combine these moment estimators to obtain a collection of estimators (F̂nM)M≥1 of F, our final estimator is chosen among this collection by Goldenshluger–Lepski’s method. This estimator is easily computable. We derive convergence rates for this estimator depending on the Hölder regularity of F and on the divergence rate of the walk. Our rate is minimal when the chain realizes a trade-off between a fast exploration of the sites, allowing to get more information and a larger number of visits of each site, allowing a better recovery of the environment itself.

Suggested Citation

  • Diel, Roland & Lerasle, Matthieu, 2018. "Non parametric estimation for random walks in random environment," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 132-155.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:1:p:132-155
    DOI: 10.1016/j.spa.2017.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917301254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mnatsakanov, Robert M., 2008. "Hausdorff moment problem: Reconstruction of distributions," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1612-1618, September.
    2. Comets, Francis & Falconnet, Mikael & Loukianov, Oleg & Loukianova, Dasha & Matias, Catherine, 2014. "Maximum likelihood estimator consistency for a ballistic random walk in a parametric random environment," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 268-288.
    3. Mnatsakanov, Robert M., 2008. "Hausdorff moment problem: Reconstruction of probability density functions," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1869-1877, September.
    4. Comets, Francis & Falconnet, Mikael & Loukianov, Oleg & Loukianova, Dasha, 2016. "Maximum likelihood estimator consistency for recurrent random walk in a parametric random environment with finite support," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3578-3604.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rémillard, Bruno N. & Vaillancourt, Jean, 2019. "Detecting periodicity from the trajectory of a random walk in random environment," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mnatsakanov, Robert & Sarkisian, Khachatur, 2012. "Varying kernel density estimation on R+," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1337-1345.
    2. Mnatsakanov, Robert M., 2011. "Moment-recovered approximations of multivariate distributions: The Laplace transform inversion," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 1-7, January.
    3. Gzyl, Henryk & Novi Inverardi, Pierluigi & Tagliani, Aldo, 2015. "Entropy and density approximation from Laplace transforms," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 225-236.
    4. Rémillard, Bruno N. & Vaillancourt, Jean, 2019. "Detecting periodicity from the trajectory of a random walk in random environment," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    5. Andreoletti, Pierre & Diel, Roland, 2020. "The heavy range of randomly biased walks on trees," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 962-999.
    6. Hansjörg Albrecher & José Carlos Araujo-Acuna, 2022. "On The Randomized Schmitter Problem," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 515-535, June.
    7. Mnatsakanov, Robert M. & Sarkisian, Khachatur & Hakobyan, Artak, 2015. "Approximation of the ruin probability using the scaled Laplace transform inversion," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 717-727.
    8. Mnatsakanov, Robert M. & Pommeret, Denys, 2024. "On recovering the relative distribution, Part 1: The moment-recovered approach," Statistics & Probability Letters, Elsevier, vol. 208(C).
    9. Gzyl, Henryk & Novi-Inverardi, Pier-Luigi & Tagliani, Aldo, 2013. "Determination of the probability of ultimate ruin by maximum entropy applied to fractional moments," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 457-463.
    10. Comets, Francis & Falconnet, Mikael & Loukianov, Oleg & Loukianova, Dasha, 2016. "Maximum likelihood estimator consistency for recurrent random walk in a parametric random environment with finite support," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3578-3604.
    11. Mnatsakanov, Robert M. & Li, Shengqiao, 2013. "The Radon transform inversion using moments," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 936-942.
    12. Grégoire Véchambre, 2023. "Almost Sure Behavior for the Local Time of a Diffusion in a Spectrally Negative Lévy Environment," Journal of Theoretical Probability, Springer, vol. 36(2), pages 876-925, June.
    13. Calès, Ludovic & Chalkis, Apostolos & Emiris, Ioannis Z., 2019. "On the cross-sectional distribution of portfolio returns," JRC Working Papers in Economics and Finance 2019-11, Joint Research Centre, European Commission.
    14. Mnatsakanov, Robert M., 2008. "Hausdorff moment problem: Reconstruction of probability density functions," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1869-1877, September.
    15. Ludovic Cal`es & Apostolos Chalkis & Ioannis Z. Emiris, 2021. "The cross-sectional distribution of portfolio returns and applications," Papers 2105.06573, arXiv.org.
    16. Weimei Li & Leifu Gao, 2024. "Research on Risk-Averse Procurement Optimization of Emergency Supplies for Mine Thermodynamic Disasters," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    17. Robert M. Mnatsakanov & Hansjoerg Albrecher & Stephane Loisel, 2022. "Approximations of Copulas via Transformed Moments," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3175-3193, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:1:p:132-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.