IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v15y2008i2p183-203.html
   My bibliography  Save this article

A Structural Model with Unobserved Default Boundary

Author

Listed:
  • Thorsten Schmidt
  • Alexander Novikov

Abstract

A firm-value model similar to the one proposed by Black and Cox (1976) is considered. Instead of assuming a constant and known default boundary, the default boundary is an unobserved stochastic process. This process has a Brownian component, reflecting the influence of uncertain effects on the precise timing of the default, and a jump component, which relates to abrupt changes in the policy of the company, exogenous events or changes in the debt structure. Interestingly, this setup admits a default intensity, so the reduced form methodology can be applied.

Suggested Citation

  • Thorsten Schmidt & Alexander Novikov, 2008. "A Structural Model with Unobserved Default Boundary," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 183-203.
  • Handle: RePEc:taf:apmtfi:v:15:y:2008:i:2:p:183-203
    DOI: 10.1080/13504860701718281
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860701718281
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504860701718281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-664, May.
    2. Leland, Hayne E & Toft, Klaus Bjerre, 1996. "Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads," Journal of Finance, American Finance Association, vol. 51(3), pages 987-1019, July.
    3. Jean-Pierre Fouque & Ronnie Sircar & Knut Sølna, 2006. "Stochastic Volatility Effects on Defaultable Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(3), pages 215-244.
    4. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    5. Giesecke, Kay, 2006. "Default and information," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 2281-2303, November.
    6. K. Borovkov & Alexander Novikov, 2004. "Explicit Bounds for Approximation Rates for Boundary Crossing Probabilities for the Wiener Process," Research Paper Series 115, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. repec:dau:papers:123456789/2191 is not listed on IDEAS
    8. Délia Coculescu, 2006. "Valuation of default sensitive claims under imperfect information," Post-Print halshs-00163334, HAL.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Schmidt, Thorsten & Stute, Winfried, 2007. "Shot-noise processes and the minimal martingale measure," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1332-1338, July.
    11. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank Gehmlich & Thorsten Schmidt, 2014. "Dynamic Defaultable Term Structure Modelling beyond the Intensity Paradigm," Papers 1411.4851, arXiv.org, revised Jul 2015.
    2. Gregor Dorfleitner & Paul Schneider & Tanja Veža, 2011. "Flexing the default barrier," Quantitative Finance, Taylor & Francis Journals, vol. 11(12), pages 1729-1743.
    3. Chao Xu & Yinghui Dong & Guojing Wang, 2019. "The pricing of defaultable bonds under a regime-switching jump-diffusion model with stochastic default barrier," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(9), pages 2185-2205, May.
    4. Arianna Agosto & Enrico Moretto, 2012. "Exploiting default probabilities in a structural model with nonconstant barrier," Applied Financial Economics, Taylor & Francis Journals, vol. 22(8), pages 667-679, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    2. Murphy, Austin & Headley, Adrian, 2022. "An empirical evaluation of alternative fundamental models of credit spreads," International Review of Financial Analysis, Elsevier, vol. 81(C).
    3. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    4. Reisz, Alexander S. & Perlich, Claudia, 2007. "A market-based framework for bankruptcy prediction," Journal of Financial Stability, Elsevier, vol. 3(2), pages 85-131, July.
    5. Sheen X. Liu & Howard Qi & Chunchi Wu, 2006. "Personal Taxes, Endogenous Default, and Corporate Bond Yield Spreads," Management Science, INFORMS, vol. 52(6), pages 939-954, June.
    6. Leonard Tchuindjo, 2007. "Pricing of Multi-Defaultable Bonds with a Two-Correlated-Factor Hull-White Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 19-39.
    7. Zimmermann, Paul, 2021. "The role of the leverage effect in the price discovery process of credit markets," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).
    8. Sottile, Pedro, 2013. "On the political determinants of sovereign risk: Evidence from a Markov-switching vector autoregressive model for Argentina," Emerging Markets Review, Elsevier, vol. 15(C), pages 160-185.
    9. Perrakis, Stylianos & Zhong, Rui, 2015. "Credit spreads and state-dependent volatility: Theory and empirical evidence," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 215-231.
    10. Luca Benzoni & Lorenzo Garlappi & Robert Goldstein, 2023. "Incomplete Information, Debt Issuance, and the Term Structure of Credit Spreads," Management Science, INFORMS, vol. 69(7), pages 4331-4352, July.
    11. Stephen Zamore & Kwame Ohene Djan & Ilan Alon & Bersant Hobdari, 2018. "Credit Risk Research: Review and Agenda," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(4), pages 811-835, March.
    12. Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2020. "A martingale representation theorem and valuation of defaultable securities," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1527-1564, October.
    13. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    14. Luca Benzoni & Lorenzo Garlappi & Robert S. Goldstein, 2019. "Asymmetric Information, Dynamic Debt Issuance, and the Term Structure of Credit Spreads," Working Paper Series WP-2019-8, Federal Reserve Bank of Chicago.
    15. Abel Elizalde, 2006. "Credit Risk Models II: Structural Models," Working Papers wp2006_0606, CEMFI.
    16. Nystrom, Kaj & Skoglund, Jimmy, 2006. "A credit risk model for large dimensional portfolios with application to economic capital," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2163-2197, August.
    17. Giesecke, Kay, 2006. "Default and information," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 2281-2303, November.
    18. Han, Bing & Zhou, Yi, 2015. "Understanding the term structure of credit default swap spreads," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 18-35.
    19. Tingqiang Chen & Suyang Wang, 2023. "Incomplete information model of credit default of micro and small enterprises," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2956-2974, July.
    20. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:15:y:2008:i:2:p:183-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.