IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v69y2004i4p389-396.html
   My bibliography  Save this article

Some stochastic orders of Kotz-type distributions

Author

Listed:
  • Ding, Ying
  • Zhang, Xinsheng

Abstract

An identity found by Müller (Ann. Inst. Statist. Math. 53 (2001) 567) for normal distributions is generalized to Kotz-type distributions. Some stochastic orders of Kotz-type distributions are discussed by means of this identity.

Suggested Citation

  • Ding, Ying & Zhang, Xinsheng, 2004. "Some stochastic orders of Kotz-type distributions," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 389-396, October.
  • Handle: RePEc:eee:stapro:v:69:y:2004:i:4:p:389-396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00156-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfred Müller, 2001. "Stochastic Ordering of Multivariate Normal Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 567-575, September.
    2. Marco Scarsini & Alfred Muller, 2001. "Stochastic comparison of random vectors with a common copula," Post-Print hal-00540198, HAL.
    3. Alfred Müller & Marco Scarsini, 2001. "Stochastic Comparison of Random Vectors with a Common Copula," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 723-740, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuancun Yin, 2019. "Stochastic Orderings of Multivariate Elliptical Distributions," Papers 1910.07158, arXiv.org, revised Nov 2019.
    2. Pan, Xiaoqing & Qiu, Guoxin & Hu, Taizhong, 2016. "Stochastic orderings for elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 83-88.
    3. Landsman, Zinoviy & Tsanakas, Andreas, 2006. "Stochastic ordering of bivariate elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 76(5), pages 488-494, March.
    4. Ansari, Jonathan & Rüschendorf, Ludger, 2021. "Ordering results for elliptical distributions with applications to risk bounds," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    5. Jonathan Ansari & Ludger Rüschendorf, 2018. "Ordering Results for Risk Bounds and Cost-efficient Payoffs in Partially Specified Risk Factor Models," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 817-838, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arlotto, Alessandro & Scarsini, Marco, 2009. "Hessian orders and multinormal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2324-2330, November.
    2. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    3. Boonen, Tim J. & Liu, Fangda, 2022. "Insurance with heterogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    4. López-Díaz, María Concepción & López-Díaz, Miguel, 2013. "A note on the family of extremality stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 230-236.
    5. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    6. Marcello Basili & Paulo Casaca & Alain Chateauneuf & Maurizio Franzini, 2017. "Multidimensional Pigou–Dalton transfers and social evaluation functions," Theory and Decision, Springer, vol. 83(4), pages 573-590, December.
    7. Ansari, Jonathan & Rüschendorf, Ludger, 2021. "Ordering results for elliptical distributions with applications to risk bounds," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    8. Fernández-Ponce, J.M. & Pellerey, F. & Rodríguez-Griñolo, M.R., 2011. "A characterization of the multivariate excess wealth ordering," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 410-417.
    9. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    10. Xu Guo & Andreas Wagener & Wing-Keung Wong & Lixing Zhu, 2018. "The two-moment decision model with additive risks," Risk Management, Palgrave Macmillan, vol. 20(1), pages 77-94, February.
    11. Belzunce, Félix & Ruiz, José M. & Suárez-Llorens, Alfonso, 2008. "On multivariate dispersion orderings based on the standard construction," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 271-281, February.
    12. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    13. Belzunce, Félix & Suárez-Llorens, Alfonso & Sordo, Miguel A., 2012. "Comparison of increasing directionally convex transformations of random vectors with a common copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 385-390.
    14. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    15. Bäuerle, Nicole & Glauner, Alexander, 2018. "Optimal risk allocation in reinsurance networks," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 37-47.
    16. Mulero, Julio & Pellerey, Franco & Rodríguez-Griñolo, Rosario, 2010. "Stochastic comparisons for time transformed exponential models," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 328-333, April.
    17. Lu, ZhiYi & Liu, LePing & Zhang, JianYu & Meng, LiLi, 2012. "Optimal insurance under multiple sources of risk with positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 462-471.
    18. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2005. "Some notions of multivariate positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 13-26, August.
    19. Fabrizio Durante, 2009. "Construction of non-exchangeable bivariate distribution functions," Statistical Papers, Springer, vol. 50(2), pages 383-391, March.
    20. Ansari Jonathan & Rüschendorf Ludger, 2021. "Sklar’s theorem, copula products, and ordering results in factor models," Dependence Modeling, De Gruyter, vol. 9(1), pages 267-306, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:69:y:2004:i:4:p:389-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.