IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v20y2018i3d10.1007_s11009-016-9536-1.html
   My bibliography  Save this article

Ordering Results for Risk Bounds and Cost-efficient Payoffs in Partially Specified Risk Factor Models

Author

Listed:
  • Jonathan Ansari

    (University of Freiburg)

  • Ludger Rüschendorf

    (University of Freiburg)

Abstract

Motivated by the problem of sharp risk bounds in partially specified risk factor models and by the method of cost-efficient payoffs with given payoff structure we introduce and describe some stochastic odering problems for conditionally comonotonic resp. antimonotonic random variables. The aim is to describe the influence of the specified dependence of the components of the random vector X with a benchmark Z on the risk bounds in a risk portfolio resp. on the gain of cost efficiency of the optimal payoffs. We obtain in particular explicit results in dependence on distributional parameters for elliptical models in the case of risk bounds and for the multivariate Samuelson model in the case of cost efficient payoffs.

Suggested Citation

  • Jonathan Ansari & Ludger Rüschendorf, 2018. "Ordering Results for Risk Bounds and Cost-efficient Payoffs in Partially Specified Risk Factor Models," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 817-838, September.
  • Handle: RePEc:spr:metcap:v:20:y:2018:i:3:d:10.1007_s11009-016-9536-1
    DOI: 10.1007/s11009-016-9536-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-016-9536-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-016-9536-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Scarsini & Alessandro Arlotto, 2009. "Hessian orders and multinormal distributions - à paraître," Post-Print hal-00542400, HAL.
    2. Dybvig, Philip H, 1988. "Distributional Analysis of Portfolio Choice," The Journal of Business, University of Chicago Press, vol. 61(3), pages 369-393, July.
    3. Ernst August Von Hammerstein & Eva Lütkebohmert & Ludger Rüschendorf & Viktor Wolf, 2014. "Optimality Of Payoffs In Lévy Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1-46.
    4. Franck Moraux & Carole Bernard & Ludger Rüschendorf & Steven Vanduffel, 2013. "Optimal payoffs under state-dependent constraints," Post-Print halshs-00830435, HAL.
    5. Ding, Ying & Zhang, Xinsheng, 2004. "Some stochastic orders of Kotz-type distributions," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 389-396, October.
    6. Carole Bernard & Mateusz Maj & Steven Vanduffel, 2011. "Improving the Design of Financial Products in a Multidimensional Black-Scholes Market," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(1), pages 77-96.
    7. Arlotto, Alessandro & Scarsini, Marco, 2009. "Hessian orders and multinormal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2324-2330, November.
    8. Shaked, Moshe & Shanthikumar, J. George, 1997. "Supermodular Stochastic Orders and Positive Dependence of Random Vectors," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 86-101, April.
    9. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuancun Yin, 2019. "Stochastic Orderings of Multivariate Elliptical Distributions," Papers 1910.07158, arXiv.org, revised Nov 2019.
    2. Pan, Xiaoqing & Qiu, Guoxin & Hu, Taizhong, 2016. "Stochastic orderings for elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 83-88.
    3. Ansari, Jonathan & Rüschendorf, Ludger, 2021. "Ordering results for elliptical distributions with applications to risk bounds," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    4. Carole Bernard & Franck Moraux & Ludger R�schendorf & Steven Vanduffel, 2015. "Optimal payoffs under state-dependent preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1157-1173, July.
    5. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    6. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    7. Margaret Meyer & Bruno Strulovici, 2013. "Beyond Correlation: Measuring Interdependence Through Complementarities," Economics Series Working Papers 655, University of Oxford, Department of Economics.
    8. Andrea Galeotti & Christian Ghiglinoy & Sanjeev Goyal, 2016. "Financial Linkages, Portfolio Choice and Systemic Risk," Cambridge Working Papers in Economics 1612, Faculty of Economics, University of Cambridge.
    9. Carole Bernard & Junsen Tang, 2016. "Simplified Hedge For Path-Dependent Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-32, November.
    10. Meyer, Margaret & Strulovici, Bruno, 2013. "The Supermodular Stochastic Ordering," CEPR Discussion Papers 9486, C.E.P.R. Discussion Papers.
    11. Mehdi Amiri & Narayanaswamy Balakrishnan & Abbas Eftekharian, 2022. "Hessian orderings of multivariate normal variance-mean mixture distributions and their applications in evaluating dependent multivariate risk portfolios," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 679-707, September.
    12. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    13. Falk, Michael, 1998. "A Note on the Comedian for Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 306-317, November.
    14. Savas Dayanik & Jing-Sheng Song & Susan H. Xu, 2003. "The Effectiveness of Several Performance Bounds for Capacitated Production, Partial-Order-Service, Assemble-to-Order Systems," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 230-251, December.
    15. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    16. Jacob, P. & Suquet, Ch., 1997. "Regression and asymptotical location of a multivariate sample," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 173-179, September.
    17. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    18. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    19. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    20. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:20:y:2018:i:3:d:10.1007_s11009-016-9536-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.