IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v55y2001i1p29-38.html
   My bibliography  Save this article

Perpetuities and asymptotic change-point analysis

Author

Listed:
  • Baron, Michael
  • Rukhin, Andrew L.

Abstract

The distribution of stochastically discounted sums (perpetuities) is studied. For Bernoulli-type variables a canonical representation of this distribution is obtained, and it is proven to be singular continuous. In the asymptotic setting of the change-point estimation problem the limiting behavior of the posterior distribution is shown to be given by two independent perpetuities.

Suggested Citation

  • Baron, Michael & Rukhin, Andrew L., 2001. "Perpetuities and asymptotic change-point analysis," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 29-38, November.
  • Handle: RePEc:eee:stapro:v:55:y:2001:i:1:p:29-38
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00122-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Rukhin Andrew L., 1997. "Change-Point Estimation Under Asymmetric Loss," Statistics & Risk Modeling, De Gruyter, vol. 15(2), pages 141-164, February.
    3. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    4. Horváth, Lajos, 1989. "The limit distributions of likelihood ratio and cumulative sum tests for a change in a binomial probability," Journal of Multivariate Analysis, Elsevier, vol. 31(1), pages 148-159, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel Exner & Petr v{S}eba, 2007. "A Markov process associated with plot-size distribution in Czech Land Registry and its number-theoretic properties," Papers 0711.1836, arXiv.org, revised Dec 2007.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
    2. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    3. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    4. Hafner, Christian M. & Herwartz, Helmut, 1999. "Time-varying market price of risk in the CAPM: Approaches, empirical evidence and implications," SFB 373 Discussion Papers 1999,22, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    6. Shiqing Ling & W. K. Li & Michael McAleer, 2003. "Estimation and Testing for Unit Root Processes with GARCH (1, 1) Errors: Theory and Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 22(2), pages 179-202.
    7. LINTON, Olivier & PERRON, Benoît, 1999. "The Shape of the Risk Premium: Evidence from a Semiparametric Garch Model," Cahiers de recherche 9911, Universite de Montreal, Departement de sciences economiques.
    8. Marcelo Cunha Medeiros & Alvaro Veiga, 2004. "Modelling multiple regimes in financial volatility with a flexible coefficient GARCH model," Textos para discussão 486, Department of Economics PUC-Rio (Brazil).
    9. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    10. Verhoeven, Peter & McAleer, Michael, 2004. "Fat tails and asymmetry in financial volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 351-361.
    11. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    12. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    13. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    14. Gonzalez-Rivera, Gloria & Drost, Feike C., 1999. "Efficiency comparisons of maximum-likelihood-based estimators in GARCH models," Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
    15. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    16. Hong, Yongmiao & Liu, Yanhui & Wang, Shouyang, 2009. "Granger causality in risk and detection of extreme risk spillover between financial markets," Journal of Econometrics, Elsevier, vol. 150(2), pages 271-287, June.
    17. HAFNER, Christian & PREMINGER, Arie, 2016. "On Asymptotic Theory for ARCH(infinite) Models," LIDAM Discussion Papers CORE 2016030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Marcelo Cunha Medeiros & Felix Chan & Michael McAller, 2005. "Structure and asymptotic theory for STAR(1)-GARCH(1,1) models," Textos para discussão 506, Department of Economics PUC-Rio (Brazil).
    19. Stelios Arvanitis & Antonis Demos, 2015. "A class of indirect inference estimators: higher‐order asymptotics and approximate bias correction," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 200-241, June.
    20. Bai, Jushan & Ng, Serena, 2001. "A consistent test for conditional symmetry in time series models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 225-258, July.
    21. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:55:y:2001:i:1:p:29-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.