Estimating multivariate density and its derivatives for mixed measurement error data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2022.105005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Masry, E., 1993. "Asymptotic Normality for Deconvolution Estimators of Multivariate Densities of Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 47-68, January.
- Masry, Elias, 1993. "Strong consistency and rates for deconvolution of multivariate densities of stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 47(1), pages 53-74, August.
- Fan, Jianqing & Masry, Elias, 1992. "Multivariate regression estimation with errors-in-variables: Asymptotic normality for mixing processes," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 237-271, November.
- Raymond J. Carroll & Aurore Delaigle & Peter Hall, 2007. "Non‐parametric regression estimation from data contaminated by a mixture of Berkson and classical errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 859-878, November.
- Anderson, Dale N., 1992. "A multivariate Linnik distribution," Statistics & Probability Letters, Elsevier, vol. 14(4), pages 333-336, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Seçil Yalaz, 2019. "Multivariate partially linear regression in the presence of measurement error," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 123-135, March.
- Ioannides, D. A. & Alevizos, P. D., 1997. "Nonparametric regression with errors in variables and applications," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 35-43, February.
- Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Zhou, Yong & Liang, Hua, 2000. "Asymptotic Normality for L1 Norm Kernel Estimator of Conditional Median under [alpha]-Mixing Dependence," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 136-154, April.
- Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
- Delaigle, Aurore & Meister, Alexander, 2007. "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1416-1426, December.
- Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
- Masry, Elias, 2005. "Nonparametric regression estimation for dependent functional data: asymptotic normality," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 155-177, January.
- Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
- Mynbaev, Kairat & Martins-Filho, Carlos, 2015.
"Consistency and asymptotic normality for a nonparametric prediction under measurement errors,"
Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 166-188.
- Mynbaev, Kairat & Martins-Filho, Carlos, 2015. "Consistency and asymptotic normality for a nonparametric prediction under measurement errors," MPRA Paper 75845, University Library of Munich, Germany, revised 2014.
- Liang, Han-Ying & de Ua-lvarez, Jacobo, 2009. "A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1219-1231, July.
- Christian Hesse, 1995. "Deconvolving a density from contaminated dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 645-663, December.
- Huijun Guo & Youming Liu, 2019. "Regression estimation under strong mixing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 553-576, June.
- Marco Di Marzio & Stefania Fensore & Charles C. Taylor, 2023. "Kernel regression for errors-in-variables problems in the circular domain," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1217-1237, October.
- Marianna Pensky & Ahmed Zayed, 2002. "Density Deconvolution of Different Conditional Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(3), pages 701-712, September.
- Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
- Song, Weixing, 2008. "Model checking in errors-in-variables regression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2406-2443, November.
- Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
- Hao Dong & Daniel L. Millimet, 2020.
"Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions,"
JRFM, MDPI, vol. 13(11), pages 1-24, November.
- Dong, Hao & Millimet, Daniel L., 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," IZA Discussion Papers 13893, Institute of Labor Economics (IZA).
- Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," Departmental Working Papers 2013, Southern Methodist University, Department of Economics.
- Yang Zu, 2015. "A Note on the Asymptotic Normality of the Kernel Deconvolution Density Estimator with Logarithmic Chi-Square Noise," Econometrics, MDPI, vol. 3(3), pages 1-16, July.
More about this item
Keywords
Asymptotic normality; Classical and deconvolution kernel; Convergence rate; Measurement error; Ordinary and super smooth;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:191:y:2022:i:c:s0047259x22000367. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.