IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v12y1982i2p187-202.html
   My bibliography  Save this article

Geometric ergodicity of Harris recurrent Marcov chains with applications to renewal theory

Author

Listed:
  • Nummelin, Esa
  • Tuominen, Pekka

Abstract

Let (Xn) be a positive recurrent Harris chain on a general state space, with invariant probability measure [pi]. We give necessary and sufficient conditions for the geometric convergence of [lambda]Pnf towards its limit [pi](f), and show that when such convergence happens it is, in fact, uniform over f and in L1([pi])-norm. As a corollary we obtain that, when (Xn) is geometrically ergodic, [is proportional to] [pi](dx)||Pn(x,·)-[pi]|| converges to zero geometrically fast. We also characterize the geometric ergodicity of (Xn) in terms of hitting time distributions. We show that here the so-called small sets act like individual points of a countable state space chain. We give a test function criterion for geometric ergodicity and apply it to random walks on the positive half line. We apply these results to non-singular renewal processes on [0,[infinity]) providing a probabilistic approach to the exponencial convergence of renewal measures.

Suggested Citation

  • Nummelin, Esa & Tuominen, Pekka, 1982. "Geometric ergodicity of Harris recurrent Marcov chains with applications to renewal theory," Stochastic Processes and their Applications, Elsevier, vol. 12(2), pages 187-202, March.
  • Handle: RePEc:eee:spapps:v:12:y:1982:i:2:p:187-202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(82)90041-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    2. Kevei, Péter, 2018. "Ergodic properties of generalized Ornstein–Uhlenbeck processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 156-181.
    3. Leblanc, Frédérique, 1996. "Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 71-84, March.
    4. Achim Wübker, 2013. "Asymptotic Optimality of Isoperimetric Constants," Journal of Theoretical Probability, Springer, vol. 26(1), pages 198-221, March.
    5. Konstantin Avrachenkov & Alexey Piunovskiy & Yi Zhang, 2018. "Hitting Times in Markov Chains with Restart and their Application to Network Centrality," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1173-1188, December.
    6. Richard C. Bradley, 2021. "On some basic features of strictly stationary, reversible Markov chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 499-533, September.
    7. Allam, Abdelazziz & Mourid, Tahar, 2002. "Geometric absolute regularity of Banach space-valued autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 241-252, December.
    8. Djellout, H. & Guillin, A., 2001. "Moderate deviations for Markov chains with atom," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 203-217, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:12:y:1982:i:2:p:187-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.