IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v208y2024ics0167715224000440.html
   My bibliography  Save this article

Nearly minimax empirical Bayesian prediction of independent Poisson observables

Author

Listed:
  • Li, Xiao

Abstract

In this study, simultaneous predictive distributions for independent Poisson observables are considered and the performance of predictive distributions is evaluated using the Kullback–Leibler (K–L) loss. This study proposes a class of empirical Bayesian predictive distributions that dominate the Bayesian predictive distribution based on the Jeffreys prior. The K–L risk of the empirical Bayesian predictive distributions is demonstrated to be less than 1.04 times the minimax lower bound.

Suggested Citation

  • Li, Xiao, 2024. "Nearly minimax empirical Bayesian prediction of independent Poisson observables," Statistics & Probability Letters, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:stapro:v:208:y:2024:i:c:s0167715224000440
    DOI: 10.1016/j.spl.2024.110075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224000440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xinyi & Zhou, Dunke, 2011. "Empirical Bayes predictive densities for high-dimensional normal models," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1417-1428, November.
    2. Komaki, Fumiyasu, 2006. "A class of proper priors for Bayesian simultaneous prediction of independent Poisson observables," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1815-1828, September.
    3. Takeru Matsuda & Fumiyasu Komaki, 2015. "Singular value shrinkage priors for Bayesian prediction," Biometrika, Biometrika Trust, vol. 102(4), pages 843-854.
    4. Yasuyuki Hamura & Tatsuya Kubokawa, 2020. "Bayesian predictive distribution for a Poisson model with a parametric restriction," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(13), pages 3257-3266, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malay Ghosh & Tatsuya Kubokawa & Gauri Sankar Datta, 2020. "Density Prediction and the Stein Phenomenon," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 330-352, August.
    2. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2017. "Proper Bayes and minimax predictive densities related to estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 138-150.
    3. Komaki, Fumiyasu, 2015. "Simultaneous prediction for independent Poisson processes with different durations," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 35-48.
    4. T Matsuda & W E Strawderman, 2022. "Estimation under matrix quadratic loss and matrix superharmonicity [Shrinkage estimation with a matrix loss function]," Biometrika, Biometrika Trust, vol. 109(2), pages 503-519.
    5. Matsuda, Takeru & Strawderman, William E., 2019. "Improved loss estimation for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 300-311.
    6. Matsuda, Takeru & Komaki, Fumiyasu, 2019. "Empirical Bayes matrix completion," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 195-210.
    7. Yuasa, Ryota & Kubokawa, Tatsuya, 2020. "Ridge-type linear shrinkage estimation of the mean matrix of a high-dimensional normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    8. Hamura, Yasuyuki & Kubokawa, Tatsuya, 2020. "Bayesian shrinkage estimation of negative multinomial parameter vectors," Journal of Multivariate Analysis, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:208:y:2024:i:c:s0167715224000440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.