IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i8p1815-1828.html
   My bibliography  Save this article

A class of proper priors for Bayesian simultaneous prediction of independent Poisson observables

Author

Listed:
  • Komaki, Fumiyasu

Abstract

Simultaneous prediction and parameter inference for the independent Poisson observables model are considered. A class of proper prior distributions for Poisson means is introduced. Bayesian predictive densities and estimators based on priors in the introduced class dominate the Bayesian predictive density and estimator based on the Jeffreys prior under Kullback-Leibler loss.

Suggested Citation

  • Komaki, Fumiyasu, 2006. "A class of proper priors for Bayesian simultaneous prediction of independent Poisson observables," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1815-1828, September.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1815-1828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00205-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komaki, Fumiyasu, 2015. "Simultaneous prediction for independent Poisson processes with different durations," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 35-48.
    2. Hamura, Yasuyuki & Kubokawa, Tatsuya, 2020. "Bayesian shrinkage estimation of negative multinomial parameter vectors," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    3. Li, Xiao, 2024. "Nearly minimax empirical Bayesian prediction of independent Poisson observables," Statistics & Probability Letters, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1815-1828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.