IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v15y1984i3p295-324.html
   My bibliography  Save this article

Some limit theorems on the eigenvectors of large dimensional sample covariance matrices

Author

Listed:
  • Silverstein, Jack W.

Abstract

Let {vij} i,j = 1, 2,..., be i.i.d. standardized random variables. For each n, let Vn = (vij) I = 1, 2,..., n; J = 1, 2,..., S = s(n), where (n/s) --> y > 0 as n --> [infinity], and let Mn = (1/s)VnVnT. Previous results [7, 8] have shown the eigenvectors of Mn to display behavior, for n large, similar to those of the corresponding Wishart matrix. A certain stochastic process Xn on [0, 1], constructed from the eigenvectors of Mn, is known to converge weakly, as n --> [infinity], on D[0, 1] to Brownian bridge when v11 is N(0, 1), but it is not known whether this property holds for any other distribution. The present paper provides evidence that this property may hold in the non-Wishart case in the form of limit theorems on the convergence in distribution of random variables constructed from integrating analytic function w.r.t. Xn(Fn(x)), where Fn is the empirical distribution function of the eigenvalues of Mn. The theorems assume certain conditions on the moments of v11 including E(v114) = 3, the latter being necessary for the theorems to hold.

Suggested Citation

  • Silverstein, Jack W., 1984. "Some limit theorems on the eigenvectors of large dimensional sample covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 15(3), pages 295-324, December.
  • Handle: RePEc:eee:jmvana:v:15:y:1984:i:3:p:295-324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(84)90054-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Ledoit & Sandrine P�ch�, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
    2. Li, Yuling & Zhou, Huanchao & Hu, Jiang, 2023. "The eigenvector LSD of information plus noise matrices and its application to linear regression model," Statistics & Probability Letters, Elsevier, vol. 197(C).
    3. Bai, Zhidong & Silverstein, Jack W., 2022. "A tribute to P.R. Krishnaiah," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:15:y:1984:i:3:p:295-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.