IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v194y2023ics016771522200270x.html
   My bibliography  Save this article

Infinitely divisible matrix gamma distribution: Asymptotic behaviour and parameters estimation

Author

Listed:
  • Masmoudi, Afif
  • Rejeb, Hajer

Abstract

In this research paper, we investigate an infinitely divisible p×p matrix gamma distribution AΓp(η,Σ), with parameters η>(p−1)/2 and Σ, concentrated on the cone of symmetric positive definite matrices. The parameter Σ is supposed to be a symmetric positive definite p×p matrix. We also display some of its fundamental properties. Additionally, we identify the link between this multivariate gamma distribution and the Wishart one, which leads us to prove that AΓp(η,Σ) distribution is asymptotically a stochastic linear combination of Wishart matrices. Moreover, we provide an explicit expression of the parameters estimators using the method of moments. Eventually, we exhibit a new simulation algorithm, grounded on the obtained results, in order to illustrate the performance of these estimators.

Suggested Citation

  • Masmoudi, Afif & Rejeb, Hajer, 2023. "Infinitely divisible matrix gamma distribution: Asymptotic behaviour and parameters estimation," Statistics & Probability Letters, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:stapro:v:194:y:2023:i:c:s016771522200270x
    DOI: 10.1016/j.spl.2022.109757
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771522200270X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bodnar, Taras & Okhrin, Yarema, 2008. "Properties of the singular, inverse and generalized inverse partitioned Wishart distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2389-2405, November.
    2. Pérez-Abreu, Victor & Stelzer, Robert, 2014. "Infinitely divisible multivariate and matrix Gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 155-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    2. Bodnar Taras & Schmid Wolfgang, 2011. "On the exact distribution of the estimated expected utility portfolio weights: Theory and applications," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 319-342, December.
    3. Patrizia Semeraro, 2022. "Multivariate tempered stable additive subordination for financial models," Mathematics and Financial Economics, Springer, volume 16, number 3, March.
    4. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    5. Patrizia Semeraro, 2021. "Multivariate tempered stable additive subordination for financial models," Papers 2105.00844, arXiv.org, revised Sep 2021.
    6. Taras Bodnar & Stepan Mazur & Nestor Parolya, 2019. "Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix‐variate location mixture of normal distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 636-660, June.
    7. Chavez-Bedoya, Luis & Rosales, Francisco, 2021. "Reduction of estimation risk in optimal portfolio choice using redundant constraints," International Review of Financial Analysis, Elsevier, vol. 78(C).
    8. Javed, Farrukh & Mazur, Stepan & Thorsén, Erik, 2021. "Tangency portfolio weights under a skew-normal model in small and large dimensions," Working Papers 2021:13, Örebro University, School of Business.
    9. Benny Ren & Ian Barnett, 2022. "Autoregressive mixture models for clustering time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 918-937, November.
    10. Bodnar, Olha & Touli, Elena Farahbakhsh, 2023. "Exact test theory in Gaussian graphical models," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    11. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    12. Gupta, Arjun K. & Bodnar, Taras, 2014. "An exact test about the covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 176-189.
    13. Buchmann, Boris & Lu, Kevin W. & Madan, Dilip B., 2020. "Self-decomposability of weak variance generalised gamma convolutions," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 630-655.
    14. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof & Tyrcha, Joanna, 2018. "Tangency portfolio weights for singular covariance matrix in small and large dimensions: estimation and test theory," Working Papers 2018:1, Örebro University, School of Business.
    15. Gulliksson, Mårten & Mazur, Stepan, 2019. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Working Papers 2019:3, Örebro University, School of Business.
    16. Taras Bodnar & Arjun Gupta, 2013. "An exact test for a column of the covariance matrix based on a single observation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 847-855, August.
    17. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    18. Ogasawara, Haruhiko, 2023. "The Wishart distribution with two different degrees of freedom," Statistics & Probability Letters, Elsevier, vol. 200(C).
    19. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2013. "On the exact and approximate distributions of the product of a Wishart matrix with a normal vector," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 70-81.
    20. Bodnar, Taras & Mazur, Stepan & Ngailo, Edward & Parolya, Nestor, 2017. "Discriminant analysis in small and large dimensions," Working Papers 2017:6, Örebro University, School of Business.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:194:y:2023:i:c:s016771522200270x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.