IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v196y2023ics0047259x23000313.html
   My bibliography  Save this article

Exact test theory in Gaussian graphical models

Author

Listed:
  • Bodnar, Olha
  • Touli, Elena Farahbakhsh

Abstract

In this paper, we derive several statistical tests on the precision matrix with application to the determination of the structure of an undirected Gaussian graph. The exact distributions of the test statistics are obtained under the null hypotheses, while the exact distributions of the random matrices, which are used in the construction of the test statistics, are deduced under the alternative hypothesis. Moreover, we present the high-dimensional asymptotic distributions of the test statistics under the null hypothesis. The testing problems that an undirected Gaussian graph possesses a structure that corresponds to the precision matrix of an AR(1) process, to the block-diagonal precision matrix and to the precision of a factor model are discussed in detail. The performance of the proposed statistical tests is further investigated via an extensive simulation study and compared to the benchmark approach.

Suggested Citation

  • Bodnar, Olha & Touli, Elena Farahbakhsh, 2023. "Exact test theory in Gaussian graphical models," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000313
    DOI: 10.1016/j.jmva.2023.105185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kakizawa, Yoshihide & Iwashita, Toshiya, 2008. "A comparison of higher-order local powers of a class of one-way MANOVA tests under general distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1128-1153, July.
    2. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Rejoinder to the discussion of “Bayesian graphical models for modern biological applications”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 287-294, June.
    3. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    4. Schott, James R., 2007. "Some high-dimensional tests for a one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1825-1839, October.
    5. Bodnar, Taras & Okhrin, Yarema, 2008. "Properties of the singular, inverse and generalized inverse partitioned Wishart distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2389-2405, November.
    6. Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
    7. Mathias Drton, 2004. "Model selection for Gaussian concentration graphs," Biometrika, Biometrika Trust, vol. 91(3), pages 591-602, September.
    8. Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    2. Farrukh Javed & Stepan Mazur & Erik Thorsén, 2024. "Tangency portfolio weights under a skew-normal model in small and large dimensions," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 75(7), pages 1395-1406, July.
    3. Taras Bodnar & Solomiia Dmytriv & Yarema Okhrin & Nestor Parolya & Wolfgang Schmid, 2020. "Statistical inference for the EU portfolio in high dimensions," Papers 2005.04761, arXiv.org.
    4. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof & Tyrcha, Joanna, 2018. "Tangency portfolio weights for singular covariance matrix in small and large dimensions: estimation and test theory," Working Papers 2018:1, Örebro University, School of Business.
    5. Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
    6. Mårten Gulliksson & Stepan Mazur, 2020. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 773-794, December.
    7. Bodnar, Taras & Mazur, Stepan & Ngailo, Edward & Parolya, Nestor, 2017. "Discriminant analysis in small and large dimensions," Working Papers 2017:6, Örebro University, School of Business.
    8. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Xu, Kai & Hao, Xinxin, 2019. "A nonparametric test for block-diagonal covariance structure in high dimension and small samples," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 551-567.
    10. He, Yong & Zhang, Xinsheng & Wang, Pingping & Zhang, Liwen, 2017. "High dimensional Gaussian copula graphical model with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 457-474.
    11. Bodnar Taras & Schmid Wolfgang, 2011. "On the exact distribution of the estimated expected utility portfolio weights: Theory and applications," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 319-342, December.
    12. Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
    13. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    14. Nanny Wermuth & Kayvan Sadeghi, 2012. "Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 215-252, June.
    15. J. Cuesta-Albertos & M. Febrero-Bande, 2010. "A simple multiway ANOVA for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 537-557, November.
    16. Koldanov, Petr & Koldanov, Alexander & Kalyagin, Valeriy & Pardalos, Panos, 2017. "Uniformly most powerful unbiased test for conditional independence in Gaussian graphical model," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 90-95.
    17. Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Finance Research Letters, Elsevier, vol. 54(C).
    18. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    19. Aitken, C.G.G. & Lucy, D. & Zadora, G. & Curran, J.M., 2006. "Evaluation of transfer evidence for three-level multivariate data with the use of graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2571-2588, June.
    20. Taras Bodnar & Stepan Mazur & Nestor Parolya, 2019. "Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix‐variate location mixture of normal distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 636-660, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:196:y:2023:i:c:s0047259x23000313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.