IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v188y2022ics0167715222001055.html
   My bibliography  Save this article

Note on the delta method for finite population inference with applications to causal inference

Author

Listed:
  • Pashley, Nicole E.

Abstract

This work derives a finite population delta method. The delta method creates more general inference results when coupled with central limit theorem results for the finite population. This opens up a range of new estimators for which we can find finite population asymptotic properties. We focus on the use of this method to derive asymptotic distributional results and variance expressions for causal estimators. We illustrate the use of the method by obtaining a finite population asymptotic distribution for a causal ratio estimator.

Suggested Citation

  • Pashley, Nicole E., 2022. "Note on the delta method for finite population inference with applications to causal inference," Statistics & Probability Letters, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:stapro:v:188:y:2022:i:c:s0167715222001055
    DOI: 10.1016/j.spl.2022.109540
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222001055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clément de Chaisemartin, 2022. "Trading-off Bias and Variance in Stratified Experiments and in Staggered Adoption Designs, Under a Boundedness Condition on the Magnitude of the Treatment Effect," Working Papers hal-03873919, HAL.
    2. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    3. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    4. Peter Z. Schochet, 2018. "Design-Based Estimators for Average Treatment Effects for Multi-Armed RCTs," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 568-593, October.
    5. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    6. Peter Z. Schochet, 2020. "Analyzing Grouped Administrative Data for RCTs Using Design-Based Methods," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 32-57, February.
    7. Joel A. Middleton, 2021. "Unifying Design-based Inference: On Bounding and Estimating the Variance of any Linear Estimator in any Experimental Design," Papers 2109.09220, arXiv.org.
    8. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    9. Dmitry Arkhangelsky & Guido W. Imbens & Lihua Lei & Xiaoman Luo, 2021. "Design-Robust Two-Way-Fixed-Effects Regression For Panel Data," Papers 2107.13737, arXiv.org, revised Mar 2024.
    10. Ding Peng & Li Xinran & Miratrix Luke W., 2017. "Bridging Finite and Super Population Causal Inference," Journal of Causal Inference, De Gruyter, vol. 5(2), pages 1-8, September.
    11. Peter L. Cohen & Colin B. Fogarty, 2022. "Gaussian prepivoting for finite population causal inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 295-320, April.
    12. Glazer Amanda K. & Pimentel Samuel D., 2023. "Robust inference for matching under rolling enrollment," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-19, January.
    13. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    14. Yuchen Hu & Stefan Wager, 2022. "Switchback Experiments under Geometric Mixing," Papers 2209.00197, arXiv.org, revised Apr 2024.
    15. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    16. Evan T.R. Rosenman & Guillaume Basse & Art B. Owen & Mike Baiocchi, 2023. "Combining observational and experimental datasets using shrinkage estimators," Biometrics, The International Biometric Society, vol. 79(4), pages 2961-2973, December.
    17. Ding Peng, 2021. "Two seemingly paradoxical results in linear models: the variance inflation factor and the analysis of covariance," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 1-8, January.
    18. Quan Zhou & Philip A Ernst & Kari Lock Morgan & Donald B Rubin & Anru Zhang, 2018. "Sequential rerandomization," Biometrika, Biometrika Trust, vol. 105(3), pages 745-752.
    19. Antoine Deeb & Cl'ement de Chaisemartin, 2019. "Clustering and External Validity in Randomized Controlled Trials," Papers 1912.01052, arXiv.org, revised Dec 2022.
    20. Jonathan Roth & Pedro H. C. Sant’Anna, 2023. "Efficient Estimation for Staggered Rollout Designs," Journal of Political Economy Microeconomics, University of Chicago Press, vol. 1(4), pages 669-709.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:188:y:2022:i:c:s0167715222001055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.