IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v5y2017i2p8n7.html
   My bibliography  Save this article

Bridging Finite and Super Population Causal Inference

Author

Listed:
  • Ding Peng

    (Department of Statistics, University of California Berkeley, Berkeley, USA)

  • Li Xinran

    (Department of Statistics, Harvard University, Cambridge, MA 02138, USA)

  • Miratrix Luke W.

    (Graduate School of Education and Department of Statistics, Harvard University, Cambridge, MA 02138, USA)

Abstract

There are two general views in causal analysis of experimental data: the super population view that the units are an independent sample from some hypothetical infinite population, and the finite population view that the potential outcomes of the experimental units are fixed and the randomness comes solely from the treatment assignment. These two views differs conceptually and mathematically, resulting in different sampling variances of the usual difference-in-means estimator of the average causal effect. Practically, however, these two views result in identical variance estimators. By recalling a variance decomposition and exploiting a completeness-type argument, we establish a connection between these two views in completely randomized experiments. This alternative formulation could serve as a template for bridging finite and super population causal inference in other scenarios.

Suggested Citation

  • Ding Peng & Li Xinran & Miratrix Luke W., 2017. "Bridging Finite and Super Population Causal Inference," Journal of Causal Inference, De Gruyter, vol. 5(2), pages 1-8, September.
  • Handle: RePEc:bpj:causin:v:5:y:2017:i:2:p:8:n:7
    DOI: 10.1515/jci-2016-0027
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2016-0027
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2016-0027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
    2. Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
    3. Samii, Cyrus & Aronow, Peter M., 2012. "On equivalencies between design-based and regression-based variance estimators for randomized experiments," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 365-370.
    4. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2014. "Finite Population Causal Standard Errors," NBER Working Papers 20325, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirschauer, Norbert & Grüner, Sven & Mußhoff, Oliver & Becker, Claudia & Jantsch, Antje, 2020. "Can p-values be meaningfully interpreted without random sampling?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14, pages 71-91.
    2. Fang Han, 2024. "An Introduction to Permutation Processes (version 0.5)," Papers 2407.09664, arXiv.org.
    3. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2017. "Sampling-based vs. Design-based Uncertainty in Regression Analysis," Papers 1706.01778, arXiv.org, revised Jun 2019.
    4. Joel A. Middleton, 2021. "Unifying Design-based Inference: On Bounding and Estimating the Variance of any Linear Estimator in any Experimental Design," Papers 2109.09220, arXiv.org.
    5. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    6. Zach Branson & Tirthankar Dasgupta, 2020. "Sampling‐based Randomised Designs for Causal Inference under the Potential Outcomes Framework," International Statistical Review, International Statistical Institute, vol. 88(1), pages 101-121, April.
    7. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    8. Luis Alvarez & Bruno Ferman, 2020. "Inference in Difference-in-Differences with Few Treated Units and Spatial Correlation," Papers 2006.16997, arXiv.org, revised Apr 2023.
    9. Harrison, Ann E. & Lin, Justin Yifu & Xu, Lixin Colin, 2014. "Explaining Africa’s (Dis)advantage," World Development, Elsevier, vol. 63(C), pages 59-77.
    10. Anand Acharya & Lynda Khalaf & Marcel Voia & Myra Yazbeck & David Wensley, 2021. "Severity of Illness and the Duration of Intensive Care," Working Papers 2021-003, Human Capital and Economic Opportunity Working Group.
    11. Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).
    12. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    13. Clément de Chaisemartin, 2022. "Trading-off Bias and Variance in Stratified Experiments and in Staggered Adoption Designs, Under a Boundedness Condition on the Magnitude of the Treatment Effect," Working Papers hal-03873919, HAL.
    14. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    15. Reed, Deborah K. & Aloe, Ariel M., 2020. "Interpreting the effectiveness of a summer reading program: The eye of the beholder," Evaluation and Program Planning, Elsevier, vol. 83(C).
    16. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    17. Nordjo, R. & Adjasi, C., 2018. "The Impact of Finance on Welfare of Smallholder Farm Household in Ghana," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277142, International Association of Agricultural Economists.
    18. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    19. Haoge Chang & Joel Middleton & P. M. Aronow, 2021. "Exact Bias Correction for Linear Adjustment of Randomized Controlled Trials," Papers 2110.08425, arXiv.org, revised Oct 2021.
    20. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:5:y:2017:i:2:p:8:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.