IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v180y2022ics0167715221001887.html
   My bibliography  Save this article

Monotonicity properties for solutions of renewal equations

Author

Listed:
  • Dermitzakis, Vaios
  • Politis, Konstadinos

Abstract

We obtain sufficient conditions for the solution of a renewal equation (proper or defective) to be monotonic. Various known results concerning monotonicity of solutions appear as special cases of our results.

Suggested Citation

  • Dermitzakis, Vaios & Politis, Konstadinos, 2022. "Monotonicity properties for solutions of renewal equations," Statistics & Probability Letters, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221001887
    DOI: 10.1016/j.spl.2021.109226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221001887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Psarrakos, Georgios, 2009. "A note on convolutions of compound geometric distributions," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1231-1237, May.
    2. Mitov, Kosto V. & Omey, Edward, 2014. "Intuitive approximations for the renewal function," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 72-80.
    3. Willmot, Gordon E., 2002. "Compound geometric residual lifetime distributions and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 421-438, June.
    4. Losidis, Sotirios & Politis, Konstadinos, 2017. "A two-sided bound for the renewal function when the interarrival distribution is IMRL," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 164-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stathis Chadjiconstantinidis, 2024. "Two-sided Bounds for some Quantities in the Delayed Renewal Process," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-48, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sotirios Losidis & Konstadinos Politis, 2022. "Bounds for the Renewal Function and Related Quantities," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2647-2660, December.
    2. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "Ruin probabilities under capital constraints," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 273-282.
    3. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    4. Stathis Chadjiconstantinidis, 2023. "Sequences of Improved Two-Sided Bounds for the Renewal Function and the Solutions of Renewal-Type Equations," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-31, June.
    5. Psarrakos, Georgios, 2010. "On the DFR property of the compound geometric distribution with applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 428-433, December.
    6. Sotirios Losidis & Konstadinos Politis, 2020. "Moments of the Forward Recurrence Time in a Renewal Process," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1591-1600, December.
    7. Chadjiconstantinidis, Stathis & Politis, Konstadinos, 2007. "Two-sided bounds for the distribution of the deficit at ruin in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 41-52, July.
    8. Cheung, Eric C.K. & Landriault, David & Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 117-126, February.
    9. Woo, Jae-Kyung, 2011. "Refinements of two-sided bounds for renewal equations," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 189-196, March.
    10. Slavtchova-Bojkova, Maroussia & Trayanov, Plamen & Dimitrov, Stoyan, 2017. "Branching processes in continuous time as models of mutations: Computational approaches and algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 111-124.
    11. Chadjiconstantinidis, Stathis, 2023. "Some bounds for the renewal function and the variance of the renewal process," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    12. Sotirios Losidis & Konstadinos Politis & Georgios Psarrakos, 2021. "Exact Results and Bounds for the Joint Tail and Moments of the Recurrence Times in a Renewal Process," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1489-1505, December.
    13. Psarrakos, Georgios, 2009. "A note on convolutions of compound geometric distributions," Statistics & Probability Letters, Elsevier, vol. 79(9), pages 1231-1237, May.
    14. Pekalp, Mustafa Hilmi, 2022. "Some new bounds for the mean value function of the residual lifetime process," Statistics & Probability Letters, Elsevier, vol. 187(C).
    15. Psarrakos, Georgios, 2009. "Asymptotic results for heavy-tailed distributions using defective renewal equations," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 774-779, March.
    16. Omey, Edward & Van Gulck, Stefan, 2015. "Intuitive approximations in discrete renewal theory, Part 1: Regularly varying case," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 68-74.
    17. Stathis Chadjiconstantinidis, 2024. "Two-sided Bounds for some Quantities in the Delayed Renewal Process," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-48, September.
    18. Willmot, Gordon E., 2004. "A note on a class of delayed renewal risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 251-257, April.
    19. Politis, Konstadinos, 2005. "Bounds for the probability and severity of ruin in the Sparre Andersen model," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 165-177, April.
    20. Georgios Psarrakos, 2015. "On the Integrated Tail of the Deficit in the Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 497-513, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221001887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.