IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i1d10.1007_s11009-015-9459-2.html
   My bibliography  Save this article

Exit Times, Overshoot and Undershoot for a Surplus Process in the Presence of an Upper Barrier

Author

Listed:
  • Michael V. Boutsikas

    (University of Piraeus)

  • Konstadinos Politis

    (University of Piraeus)

Abstract

We study the movement of a surplus process with initial capital u in the presence of two barriers: a lower barrier at zero and an upper barrier at b (b > u). More specifically, we consider the behaviour of the surplus: (a) in continuous time; and (b) only at claim arrival times. For each of these cases, we find the expected time until the process exits the interval [0,b]. We also obtain results related to the undershoot and overshoot of the surplus which, in particular for case (b) above, are derived under the assumption that the distribution of claim sizes and/or claim interarrival times belongs to the mixed Erlang class. In the final section we discuss the implementation of the methods in a number of examples using computer algebra software. These examples illustrate the efficiency of the methods even in fairly complicated cases.

Suggested Citation

  • Michael V. Boutsikas & Konstadinos Politis, 2017. "Exit Times, Overshoot and Undershoot for a Surplus Process in the Presence of an Upper Barrier," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 75-95, March.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:1:d:10.1007_s11009-015-9459-2
    DOI: 10.1007/s11009-015-9459-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-015-9459-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-015-9459-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dickson, David C. M., 1992. "On the distribution of the surplus prior to ruin," Insurance: Mathematics and Economics, Elsevier, vol. 11(3), pages 191-207, October.
    2. Willmot, Gordon E., 2007. "On the discounted penalty function in the renewal risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 17-31, July.
    3. Gordon Willmot & Jae-Kyung Woo, 2007. "On the Class of Erlang Mixtures with Risk Theoretic Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 99-115.
    4. Picard, Philippe, 1994. "On some measures of the severity of ruin in the classical Poisson model," Insurance: Mathematics and Economics, Elsevier, vol. 14(2), pages 107-115, May.
    5. Gerber, Hans U., 1990. "When does the surplus reach a given target?," Insurance: Mathematics and Economics, Elsevier, vol. 9(2-3), pages 115-119, September.
    6. Zhou, Xiaowen, 2004. "When does surplus reach a certain level before ruin?," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 553-561, December.
    7. Willmot, Gordon E., 2002. "Compound geometric residual lifetime distributions and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 421-438, June.
    8. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    9. Gordon E. Willmot & X. Sheldon Lin, 2011. "Risk modelling with the mixed Erlang distribution," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 27(1), pages 2-16, January.
    10. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    11. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    12. Wang, Nan & Politis, Konstadinos, 2002. "Some characteristics of a surplus process in the presence of an upper barrier," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 231-241, April.
    13. Landriault, David & Willmot, Gordon, 2008. "On the Gerber-Shiu discounted penalty function in the Sparre Andersen model with an arbitrary interclaim time distribution," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 600-608, April.
    14. Psarrakos, Georgios, 2008. "Tail bounds for the distribution of the deficit in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 197-202, October.
    15. Dickson, David C.M. & Li, Shuanming, 2013. "The distributions of the time to reach a given level and the duration of negative surplus in the Erlang(2) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 490-497.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    2. Schmidli, Hanspeter, 2010. "On the Gerber-Shiu function and change of measure," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 3-11, February.
    3. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    4. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    5. Albrecher, Hansjörg & Constantinescu, Corina & Pirsic, Gottlieb & Regensburger, Georg & Rosenkranz, Markus, 2010. "An algebraic operator approach to the analysis of Gerber-Shiu functions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 42-51, February.
    6. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    7. Cheung, Eric C.K. & Landriault, David & Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 117-126, February.
    8. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    9. Wang, Nan & Politis, Konstadinos, 2002. "Some characteristics of a surplus process in the presence of an upper barrier," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 231-241, April.
    10. Woo, Jae-Kyung, 2011. "Refinements of two-sided bounds for renewal equations," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 189-196, March.
    11. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    12. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.
    13. Willmot, Gordon E. & Woo, Jae-Kyung, 2012. "On the analysis of a general class of dependent risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 134-141.
    14. Anna Castañer & M. Claramunt & Maite Mármol, 2012. "Ruin probability and time of ruin with a proportional reinsurance threshold strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 614-638, October.
    15. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    16. Hu Yang & Zhimin Zhang, 2009. "On a class of renewal risk model with random income," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 678-695, November.
    17. Landriault, David & Shi, Tianxiang & Willmot, Gordon E., 2011. "Joint densities involving the time to ruin in the Sparre Andersen risk model under exponential assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 371-379.
    18. Cai, Jun & Dickson, David C. M., 2002. "On the expected discounted penalty function at ruin of a surplus process with interest," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 389-404, June.
    19. Zhang, Zhimin & Yang, Hu, 2010. "A generalized penalty function in the Sparre-Andersen risk model with two-sided jumps," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 597-607, April.
    20. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB School of Economics Working Papers 2014/310, University of Barcelona School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:1:d:10.1007_s11009-015-9459-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.