IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v113y2017icp111-124.html
   My bibliography  Save this article

Branching processes in continuous time as models of mutations: Computational approaches and algorithms

Author

Listed:
  • Slavtchova-Bojkova, Maroussia
  • Trayanov, Plamen
  • Dimitrov, Stoyan

Abstract

The appearance of mutations in cancer development plays a crucial role in the disease control and its medical treatment. Motivated by the practical significance, it is of interest to model the event of occurrence of a mutant cell that will possibly lead to a path of indefinite survival. A two-type branching process model in continuous time is proposed for describing the relationship between the waiting time till the first escaping extinction mutant cell is born and the lifespan distribution of cells, which due to the applied treatment have small reproductive ratio. A numerical method and related algorithm for solving the integral equations are developed, in order to estimate the distribution of the waiting time to the escaping extinction mutant cell is born. Numerical studies demonstrate that the proposed approximation algorithm reveals the substantial difference of the results in discrete-time setting. In addition, to study the time needed for the mutant cell population to reach high levels a simulation algorithm for continuous two-type decomposable branching process is proposed. Two different computational approaches together with the theoretical studies might be applied to different kinds of cancer and their proper treatment.

Suggested Citation

  • Slavtchova-Bojkova, Maroussia & Trayanov, Plamen & Dimitrov, Stoyan, 2017. "Branching processes in continuous time as models of mutations: Computational approaches and algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 111-124.
  • Handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:111-124
    DOI: 10.1016/j.csda.2016.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316303139
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mitov, Kosto V. & Omey, Edward, 2014. "Intuitive approximations for the renewal function," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 72-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omey, Edward & Van Gulck, Stefan, 2015. "Intuitive approximations in discrete renewal theory, Part 1: Regularly varying case," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 68-74.
    2. Dermitzakis, Vaios & Politis, Konstadinos, 2022. "Monotonicity properties for solutions of renewal equations," Statistics & Probability Letters, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:113:y:2017:i:c:p:111-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.