IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v79y2017i1d10.1007_s13171-016-0095-x.html
   My bibliography  Save this article

Asymptotic Properties of Hazard Rate Estimator in Censored Linear Regression

Author

Listed:
  • Fuxia Cheng

    (Illinois State University)

Abstract

We consider nonparametric inference for error hazard rates in linear regression with right censored data. The estimator for hazard rate function is defined based on the kernel-smoothed estimator of error density, which makes use of the Kaplan-Meier estimator of the error distribution. We obtain the limit distribution for the maximum deviation of the hazard rate estimator.

Suggested Citation

  • Fuxia Cheng, 2017. "Asymptotic Properties of Hazard Rate Estimator in Censored Linear Regression," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 1-12, February.
  • Handle: RePEc:spr:sankha:v:79:y:2017:i:1:d:10.1007_s13171-016-0095-x
    DOI: 10.1007/s13171-016-0095-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-016-0095-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-016-0095-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Fuxia, 2012. "Maximum deviation of error density estimators in censored linear regression," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1657-1664.
    2. Diehl, Sabine & Stute, Winfried, 1988. "Kernel density and hazard function estimation in the presence of censoring," Journal of Multivariate Analysis, Elsevier, vol. 25(2), pages 299-310, May.
    3. Ingrid Van Keilegom & Noël Veraverbeke, 2001. "Hazard Rate Estimation in Nonparametric Regression with Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 730-745, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junshan Shen & Shuyuan He, 2007. "Empirical likelihood for the difference of quantiles under censorship," Statistical Papers, Springer, vol. 48(3), pages 437-457, September.
    2. Junshan Shen & Shuyuan He, 2008. "Empirical likelihood confidence intervals for hazard and density functions under right censorship," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 575-589, September.
    3. Wang, Qi-Hua, 1999. "Some bounds for the error of an estimator of the hazard function with censored data," Statistics & Probability Letters, Elsevier, vol. 44(4), pages 319-326, October.
    4. Sun, Liuquan & Zhou, Yong, 1998. "Sequential confidence bands for densities under truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 40(1), pages 31-41, September.
    5. Mokkadem, Abdelkader & Pelletier, Mariane, 2021. "A compact law of the iterated logarithm for online estimator of hazard rate under random censoring," Statistics & Probability Letters, Elsevier, vol. 178(C).
    6. Ülkü Gürler & Jane-Ling Wang, 1993. "Nonparametric estimation of hazard functions and their derivatives under truncation model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(2), pages 249-264, June.
    7. Cai, Zongwu, 1998. "Kernel Density and Hazard Rate Estimation for Censored Dependent Data," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 23-34, October.
    8. Zhang, Biao, 1998. "A note on the integrated square errors of kernel density estimators under random censorship," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 225-234, July.
    9. Spierdijk, Laura, 2008. "Nonparametric conditional hazard rate estimation: A local linear approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2419-2434, January.
    10. Diallo, Amadou Oury Korbe & Louani, Djamal, 2013. "Moderate and large deviation principles for the hazard rate function kernel estimator under censoring," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 735-743.
    11. Wang, Qihua & Liu, Wei & Liu, Chunling, 2009. "Probability density estimation for survival data with censoring indicators missing at random," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 835-850, May.
    12. Yang, Hanfang & Zhao, Yichuan, 2012. "Smoothed empirical likelihood for ROC curves with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 254-263.
    13. Arcones, Miguel A. & Giné, Evarist, 1995. "On the law of the iterated logarithm for canonical U-statistics and processes," Stochastic Processes and their Applications, Elsevier, vol. 58(2), pages 217-245, August.
    14. Han-Ying Liang & Elias Ould Saïd, 2018. "A weighted estimator of conditional hazard rate with left-truncated and dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 155-189, February.
    15. Tine Buch-Kromann & Jens Nielsen, 2012. "Multivariate density estimation using dimension reducing information and tail flattening transformations for truncated or censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 167-192, February.
    16. Weißbach, Rafael, 2004. "A General Kernel Functional Estimator with Generalized Bandwidth : Strong Consistency and Applications," Technical Reports 2004,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Liang, Han-Ying & de Ua-lvarez, Jacobo, 2009. "A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1219-1231, July.
    18. Qihua Wang & Gregg Dinse & Chunling Liu, 2012. "Hazard function estimation with cause-of-death data missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 415-438, April.
    19. Dominik Wied & Rafael Weißbach, 2012. "Consistency of the kernel density estimator: a survey," Statistical Papers, Springer, vol. 53(1), pages 1-21, February.
    20. Cheng, Fuxia, 2012. "Maximum deviation of error density estimators in censored linear regression," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1657-1664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:79:y:2017:i:1:d:10.1007_s13171-016-0095-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.