IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v173y2021ics0167715221000316.html
   My bibliography  Save this article

R-optimal design of the second-order Scheffé mixture model

Author

Listed:
  • Hao, Honghua
  • Zhu, Xiaoyuan
  • Zhang, Xinfeng
  • Zhang, Chongqi

Abstract

We investigate the R-optimal design with the second-order Scheffé model and get the general expression for the weights. Compared with the D-optimal efficiency, the R-optimal design performs consistently better.

Suggested Citation

  • Hao, Honghua & Zhu, Xiaoyuan & Zhang, Xinfeng & Zhang, Chongqi, 2021. "R-optimal design of the second-order Scheffé mixture model," Statistics & Probability Letters, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:stapro:v:173:y:2021:i:c:s0167715221000316
    DOI: 10.1016/j.spl.2021.109069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221000316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Goos & Bradley Jones & Utami Syafitri, 2016. "I-Optimal Design of Mixture Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 899-911, April.
    2. Holger Dette, 1997. "Designing Experiments with Respect to ‘Standardized’ Optimality Criteria," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 97-110.
    3. Liu, Xin & Yue, Rong-Xian & Chatterjee, Kashinath, 2014. "R-optimal designs in random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 127-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Husain, Bushra & Aslam, Fariha, 2024. "Weighted Simplex Centroid Mixture Experiments for third order Becker’s models: The R-optimal approach," Statistics & Probability Letters, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Lei & He, Daojiang, 2020. "R-optimal designs for individual prediction in random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 159(C).
    2. Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2005. "Geometric construction of optimal designs for dose-responsemodels with two parameters," Technical Reports 2005,08, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
    4. Carlos de la Calle-Arroyo & Miguel A. González-Fernández & Licesio J. Rodríguez-Aragón, 2023. "Optimal Designs for Antoine’s Equation: Compound Criteria and Multi-Objective Designs via Genetic Algorithms," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    5. Holger Dette & Laura Hoyden & Sonja Kuhnt & Kirsten Schorning, 2017. "Optimal designs for thermal spraying," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 53-72, January.
    6. Lenka Filová & Mária Trnovská & Radoslav Harman, 2012. "Computing maximin efficient experimental designs using the methods of semidefinite programming," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 709-719, July.
    7. Liu, Xin & Yue, Rong-Xian & Chatterjee, Kashinath, 2014. "R-optimal designs in random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 127-132.
    8. Ulrike Graßhoff & Heinz Holling & Rainer Schwabe, 2012. "Optimal Designs for the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 710-723, October.
    9. Bin Han & Ilya O. Ryzhov & Boris Defourny, 2016. "Optimal Learning in Linear Regression with Combinatorial Feature Selection," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 721-735, November.
    10. Pepelyshev, Andrey & Melas, Viatcheslav B. & Strigul, Nikolay & Dette, Holger, 2004. "Design of experiments for the Monod model : robust and efficient designs," Technical Reports 2004,36, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Lei He & Rong-Xian Yue, 2020. "R-optimal designs for trigonometric regression models," Statistical Papers, Springer, vol. 61(5), pages 1997-2013, October.
    12. Dette, Holger & O'Brien, Timothy E., 2003. "Efficient experimental design for the Behrens-Fisher problem with application to bioassay," Technical Reports 2003,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
    14. Yu. D. Grigoriev & V. B. Melas & P. V. Shpilev, 2021. "Excess and saturated D-optimal designs for the rational model," Statistical Papers, Springer, vol. 62(3), pages 1387-1405, June.
    15. Hertel, Ida & Kohler, Michael, 2013. "Estimation of the optimal design of a nonlinear parametric regression problem via Monte Carlo experiments," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 1-12.
    16. Dette, Holger & Biedermann, Stefanie & Zhu, Wei, 2004. "Optimal designs for dose-response models with restricted design spaces," Technical Reports 2004,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    17. Cheng, Jing & Ai, Mingyao, 2020. "Optimal designs for panel data linear regressions," Statistics & Probability Letters, Elsevier, vol. 163(C).
    18. Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    19. Haosheng Jiang & Chongqi Zhang, 2022. "Construction of Full Order-of-Addition Generalization Simplex-Centroid Designs by the Directed Graph Approach," Mathematics, MDPI, vol. 10(3), pages 1-13, January.
    20. Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:173:y:2021:i:c:s0167715221000316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.