IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v171y2021ics0167715220302972.html
   My bibliography  Save this article

On Edgeworth models for count time series

Author

Listed:
  • Weiß, Christian H.

Abstract

Inspired by the Edgeworth–Portnoy model for Gaussian time series, a family of randomized moving window (RMW) and randomized moving sum (RMS) models for stationary count time series is proposed. For the RMW process, we derive Markov properties which, in turn, allow to conclude on a connection of the RMS model to the Hidden-Markov model. This connection is used to develop an efficient scheme for maximum likelihood estimation. Then, we derive marginal and serial moment properties of the RMS process. It commonly exhibits an autoregressive autocorrelation structure, but also forms of a long memory are possible. The latter holds in particular for the proposed extended RMS model, which also satisfies certain Markov properties.

Suggested Citation

  • Weiß, Christian H., 2021. "On Edgeworth models for count time series," Statistics & Probability Letters, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:stapro:v:171:y:2021:i:c:s0167715220302972
    DOI: 10.1016/j.spl.2020.108994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220302972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. A. Jacobs & P. A. W. Lewis, 1983. "Stationary Discrete Autoregressive‐Moving Average Time Series Generated By Mixtures," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(1), pages 19-36, January.
    2. Portnoy, Stephen, 2019. "Edgeworth’s time series model: Not AR(1) but same covariance structure," Journal of Econometrics, Elsevier, vol. 213(1), pages 281-288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
    2. Atanu Biswas & Maria Carmen Pardo & Apratim Guha, 2014. "Auto-association measures for stationary time series of categorical data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 487-514, September.
    3. Song‐Hee Kim & Ward Whitt, 2014. "Choosing arrival process models for service systems: Tests of a nonhomogeneous Poisson process," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 66-90, February.
    4. Damian Eduardo Taranto & Giacomo Bormetti & Fabrizio Lillo, 2014. "The adaptive nature of liquidity taking in limit order books," Papers 1403.0842, arXiv.org, revised Apr 2014.
    5. Guodong Pang & Ward Whitt, 2012. "The Impact of Dependent Service Times on Large-Scale Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 14(2), pages 262-278, April.
    6. Maria Eduarda Da Silva & Vera Lúcia Oliveira, 2004. "Difference Equations for the Higher‐Order Moments and Cumulants of the INAR(1) Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 317-333, May.
    7. Kosmidis, Kosmas & Hütt, Marc-Thorsten, 2023. "DNA visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    8. Kharin, Yuriy & Voloshko, Valeriy, 2021. "Robust estimation for Binomial conditionally nonlinear autoregressive time series based on multivariate conditional frequencies," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    9. Dehnert, M. & Helm, W.E. & Hütt, M.-Th., 2003. "A discrete autoregressive process as a model for short-range correlations in DNA sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 327(3), pages 535-553.
    10. Christian H. Weiß, 2018. "Goodness-of-fit testing of a count time series’ marginal distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 619-651, August.
    11. Christopher S. Withers & Saralees Nadarajah & Shou Hsing Shih, 2015. "Moments and Cumulants of a Mixture," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 541-564, September.
    12. Bondon, Pascal, 2009. "Estimation of autoregressive models with epsilon-skew-normal innovations," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1761-1776, September.
    13. Carsten Jentsch & Lena Reichmann, 2022. "Generalized binary vector autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 285-311, March.
    14. Jungtaek Oh & Christian H. Weiß, 2020. "On the Individuals Chart with Supplementary Runs Rules under Serial Dependence," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1257-1273, September.
    15. Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.
    16. Raju Maiti & Atanu Biswas, 2015. "Coherent forecasting for stationary time series of discrete data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 337-365, July.
    17. Christian H. Weiß, 2019. "Measures of Dispersion and Serial Dependence in Categorical Time Series," Econometrics, MDPI, vol. 7(2), pages 1-23, April.
    18. Chen, Zezhun & Dassios, Angelos, 2022. "Cluster point processes and Poisson thinning INARMA," LSE Research Online Documents on Economics 113652, London School of Economics and Political Science, LSE Library.
    19. Carsten Jentsch & Lena Reichmann, 2019. "Generalized Binary Time Series Models," Econometrics, MDPI, vol. 7(4), pages 1-26, December.
    20. Möller, Simon & Hameister, Heike & Hütt, Marc-Thorsten, 2014. "A genome signature derived from the interplay of word frequencies and symbol correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 216-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:171:y:2021:i:c:s0167715220302972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.