IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v185y2021ics0047259x21000555.html
   My bibliography  Save this article

Robust estimation for Binomial conditionally nonlinear autoregressive time series based on multivariate conditional frequencies

Author

Listed:
  • Kharin, Yuriy
  • Voloshko, Valeriy

Abstract

A topical problem of robust statistical estimation of parameters for binomial conditionally nonlinear autoregressive (BiCNAR) time series under innovation outliers is considered. This problem is solved by means of s-order Markov properties for observed time series and probabilistic properties of multivariate conditional frequencies of the future state under its s-prehistory. The new robust statistical estimator ζˆ called frequencies-based estimator (FBE) is constructed for the BiCNAR parameters under innovation outliers with arbitrary discrete probability distribution having some fixed known expectation. Under mild regularity conditions the constructed FBE is shown to have the robustness properties: consistency and asymptotic normality with obtained asymptotic covariance matrix. FBE also has computational advantages: an explicit form and a fast recursive re-estimation algorithm for extension of the model. Asymptotic risk functional and its minimum are evaluated using Fisher information matrix for the considered model. Sensitivity analysis of the statistical estimator ζ̃ for the BiCNAR parameters, that is constructed for the hypothetical model without outliers, is carried out for the situation with innovation outliers: ζ̃ is shown to be inconsistent in this situation, its bias and the instability coefficient are evaluated and analyzed. The robust estimator ζˆ has a free parameter — weight matrix H. The optimal weight matrix H∗ is found by minimization of the asymptotic risk w.r.t. H. Statistical estimator for H∗ based on the observed time series is constructed. Results of multiple computer experiments on simulated and real data illustrate the theory.

Suggested Citation

  • Kharin, Yuriy & Voloshko, Valeriy, 2021. "Robust estimation for Binomial conditionally nonlinear autoregressive time series based on multivariate conditional frequencies," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000555
    DOI: 10.1016/j.jmva.2021.104777
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    2. Moysiadis, Theodoros & Fokianos, Konstantinos, 2014. "On binary and categorical time series models with feedback," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 209-228.
    3. Bu, Ruijun & McCabe, Brendan, 2008. "Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov Chain approach," International Journal of Forecasting, Elsevier, vol. 24(1), pages 151-162.
    4. Euán, Carolina & Sun, Ying, 2020. "Bernoulli vector autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    5. Fokianos, Konstantinos & Tjøstheim, Dag, 2011. "Log-linear Poisson autoregression," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 563-578, March.
    6. Benjamin Kedem & Konstantinos Fokianos, 2002. "Regression Models for Binary Time Series," International Series in Operations Research & Management Science, in: Moshe Dror & Pierre L’Ecuyer & Ferenc Szidarovszky (ed.), Modeling Uncertainty, chapter 0, pages 185-199, Springer.
    7. Adrian Raftery & Simon Tavaré, 1994. "Estimation and Modelling Repeated Patterns in High Order Markov Chains with the Mixture Transition Distribution Model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 179-199, March.
    8. Konstantinos Fokianos & Roland Fried, 2010. "Interventions in INGARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 210-225, May.
    9. P. A. Jacobs & P. A. W. Lewis, 1983. "Stationary Discrete Autoregressive‐Moving Average Time Series Generated By Mixtures," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(1), pages 19-36, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    3. Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
    4. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    5. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    6. Raju Maiti & Atanu Biswas, 2015. "Coherent forecasting for stationary time series of discrete data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 337-365, July.
    7. Chen, Cathy W.S. & Chen, Chun-Shu & Hsiung, Mo-Hua, 2023. "Bayesian modeling of spatial integer-valued time series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    8. Truquet, Lionel, 2023. "Strong mixing properties of discrete-valued time series with exogenous covariates," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 294-317.
    9. Yuhyeong Jang & Raanju R. Sundararajan & Wagner Barreto-Souza & Elizabeth Wheaton-Paramo, 2024. "Determining economic factors for sex trafficking in the United States using count time series regression," Empirical Economics, Springer, vol. 67(1), pages 337-354, July.
    10. Dag Tjøstheim, 2012. "Rejoinder on: Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 469-476, September.
    11. Weiß, Christian H., 2010. "INARCH(1) processes: Higher-order moments and jumps," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1771-1780, December.
    12. Konstantinos Fokianos & Dag Tjøstheim, 2012. "Nonlinear Poisson autoregression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1205-1225, December.
    13. Stella Kitromilidou & Konstantinos Fokianos, 2016. "Mallows’ quasi-likelihood estimation for log-linear Poisson autoregressions," Statistical Inference for Stochastic Processes, Springer, vol. 19(3), pages 337-361, October.
    14. Paul Doukhan & Konstantinos Fokianos & Joseph Rynkiewicz, 2021. "Mixtures of Nonlinear Poisson Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 107-135, January.
    15. Cathy W. S. Chen & Sangyeol Lee & K. Khamthong, 2021. "Bayesian inference of nonlinear hysteretic integer-valued GARCH models for disease counts," Computational Statistics, Springer, vol. 36(1), pages 261-281, March.
    16. Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
    17. Fokianos, Konstantinos & Truquet, Lionel, 2019. "On categorical time series models with covariates," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3446-3462.
    18. Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.
    19. Chen Xi & Wang Lihong, 2013. "Conditional L1 estimation for random coefficient integer-valued autoregressive processes," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 221-235, August.
    20. Mamadou Lamine Diop & William Kengne, 2017. "Testing Parameter Change in General Integer-Valued Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 880-894, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.