IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v173y2019icp724-744.html
   My bibliography  Save this article

Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations

Author

Listed:
  • Chen, Xiongzhi

Abstract

The proportion of false null hypotheses is a very important quantity in statistical modelling and inference based on the two-component mixture model and its extensions, and in control and estimation of the false discovery rate and false non-discovery rate. Most existing estimators of this proportion threshold p-values, deconvolve the mixture model under constraints on its components, or depend heavily on the location-shift property of distributions. Hence, they usually are not consistent, applicable to non-location-shift distributions, or applicable to discrete statistics or p-values. To eliminate these shortcomings, we construct uniformly consistent estimators of the proportion as solutions to Lebesgue–Stieltjes integral equations. In particular, we provide such estimators respectively for random variables whose distributions have Riemann–Lebesgue type characteristic functions, whose distributions form discrete natural exponential families with infinite supports, and whose distributions form natural exponential families with separable moment sequences. We provide the speed of convergence and uniform consistency class for each such estimator under independence. In addition, we provide two examples for which a consistent estimator of the proportion cannot be constructed using our techniques.

Suggested Citation

  • Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
  • Handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:724-744
    DOI: 10.1016/j.jmva.2019.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18304688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter B. Gilbert, 2005. "A modified false discovery rate multiple‐comparisons procedure for discrete data, applied to human immunodeficiency virus genetics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 143-158, January.
    2. Jiashun Jin, 2008. "Proportion of non‐zero normal means: universal oracle equivalences and uniformly consistent estimators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 461-493, July.
    3. John D. Storey, 2007. "The optimal discovery procedure: a new approach to simultaneous significance testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 347-368, June.
    4. Cai, T. Tony & Sun, Wenguang, 2009. "Simultaneous Testing of Grouped Hypotheses: Finding Needles in Multiple Haystacks," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1467-1481.
    5. Di Yanming & Schafer Daniel W & Cumbie Jason S & Chang Jeff H, 2011. "The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-28, May.
    6. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    7. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    8. Mette Langaas & Bo Henry Lindqvist & Egil Ferkingstad, 2005. "Estimating the proportion of true null hypotheses, with application to DNA microarray data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 555-572, September.
    9. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    10. Jin, Jiashun & Cai, T. Tony, 2007. "Estimating the Null and the Proportion of Nonnull Effects in Large-Scale Multiple Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 495-506, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anh-Tuan Hoang & Thorsten Dickhaus, 2022. "On the usage of randomized p-values in the Schweder–Spjøtvoll estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 289-319, April.
    2. Chen, Xiongzhi, 2020. "A strong law of large numbers for simultaneously testing parameters of Lancaster bivariate distributions," Statistics & Probability Letters, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    2. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    3. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    4. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    5. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    6. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    7. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    8. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    9. Helmut Finner & Veronika Gontscharuk, 2009. "Controlling the familywise error rate with plug‐in estimator for the proportion of true null hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1031-1048, November.
    10. Haibing Zhao & Xinping Cui, 2020. "Constructing confidence intervals for selected parameters," Biometrics, The International Biometric Society, vol. 76(4), pages 1098-1108, December.
    11. Li Wang, 2019. "Weighted multiple testing procedure for grouped hypotheses with k-FWER control," Computational Statistics, Springer, vol. 34(2), pages 885-909, June.
    12. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    13. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    14. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    15. Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
    16. Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.
    17. Dennis Leung & Wenguang Sun, 2022. "ZAP: Z$$ Z $$‐value adaptive procedures for false discovery rate control with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1886-1946, November.
    18. Zehetmayer Sonja & Graf Alexandra C. & Posch Martin, 2015. "Sample size reassessment for a two-stage design controlling the false discovery rate," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(5), pages 429-442, November.
    19. Alessio Farcomeni, 2006. "More Powerful Control of the False Discovery Rate Under Dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(1), pages 43-73, May.
    20. Nik Tuzov & Frederi Viens, 2011. "Mutual fund performance: false discoveries, bias, and power," Annals of Finance, Springer, vol. 7(2), pages 137-169, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:724-744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.