IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v81y2016i4d10.1007_s11336-015-9476-7.html
   My bibliography  Save this article

Detection of Test Speededness Using Change-Point Analysis

Author

Listed:
  • Can Shao

    (University of Notre Dame)

  • Jun Li

    (University of Notre Dame)

  • Ying Cheng

    (University of Notre Dame)

Abstract

Change-point analysis (CPA) is a well-established statistical method to detect abrupt changes, if any, in a sequence of data. In this paper, we propose a procedure based on CPA to detect test speededness. This procedure is not only able to classify examinees into speeded and non-speeded groups, but also identify the point at which an examinee starts to speed. Identification of the change point can be very useful. First, it informs decision makers of the appropriate length of a test. Second, by removing the speeded responses, instead of the entire response sequence of an examinee suspected of speededness, ability estimation can be improved. Simulation studies show that this procedure is efficient in detecting both speeded examinees and the speeding point. Ability estimation is dramatically improved by removing speeded responses identified by our procedure. The procedure is then applied to a real dataset for illustration purpose.

Suggested Citation

  • Can Shao & Jun Li & Ying Cheng, 2016. "Detection of Test Speededness Using Change-Point Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1118-1141, December.
  • Handle: RePEc:spr:psycho:v:81:y:2016:i:4:d:10.1007_s11336-015-9476-7
    DOI: 10.1007/s11336-015-9476-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-015-9476-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-015-9476-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    2. Ivo Molenaar & Herbert Hoijtink, 1990. "The many null distributions of person fit indices," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 75-106, March.
    3. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    4. Armin Schwartzman & Xihong Lin, 2011. "The effect of correlation in false discovery rate estimation," Biometrika, Biometrika Trust, vol. 98(1), pages 199-214.
    5. Jeff Douglas & Hae Rim Kim & Brian Habing & Furong Gao, 1998. "Investigating Local Dependence With Conditional Covariance Functions," Journal of Educational and Behavioral Statistics, , vol. 23(2), pages 129-151, June.
    6. Yuri Goegebeur & Paul Boeck & James Wollack & Allan Cohen, 2008. "A Speeded Item Response Model with Gradual Process Change," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 65-87, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeffrey M. Patton & Ying Cheng & Maxwell Hong & Qi Diao, 2019. "Detection and Treatment of Careless Responses to Improve Item Parameter Estimation," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 309-341, June.
    2. Maxwell Hong & Lizhen Lin & Ying Cheng, 2021. "Asymptotically Corrected Person Fit Statistics for Multidimensional Constructs with Simple Structure and Mixed Item Types," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 464-488, June.
    3. Hongyue Zhu & Hong Jiao & Wei Gao & Xiangbin Meng, 2023. "Bayesian Change-Point Analysis Approach to Detecting Aberrant Test-Taking Behavior Using Response Times," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 490-520, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    2. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    3. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    4. Chen, Xiongzhi & Doerge, R.W., 2020. "A strong law of large numbers related to multiple testing normal means," Statistics & Probability Letters, Elsevier, vol. 159(C).
    5. Chen, Xiongzhi, 2020. "A strong law of large numbers for simultaneously testing parameters of Lancaster bivariate distributions," Statistics & Probability Letters, Elsevier, vol. 167(C).
    6. Hyeongwoo Kim & Ying Lin & Henry Thompson, 2021. "Exchange Rate Pass-Through to Consumer Prices: The Increasing Role of Energy Prices," Open Economies Review, Springer, vol. 32(2), pages 395-415, April.
    7. Kurt Graden Lunsford, 2018. "Understanding the Aspects of Federal Reserve Forward Guidance," Working Papers (Old Series) 1815, Federal Reserve Bank of Cleveland.
    8. Michael Greenstone & Rema Hanna, 2014. "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," American Economic Review, American Economic Association, vol. 104(10), pages 3038-3072, October.
    9. Alaa Abi Morshed & Elena Andreou & Otilia Boldea, 2018. "Structural Break Tests Robust to Regression Misspecification," Econometrics, MDPI, vol. 6(2), pages 1-39, May.
    10. Alastair R. Hall & Yuyi Li & Chris D. Orme & Arthur Sinko, 2015. "Testing for Structural Instability in Moment Restriction Models: An Info-Metric Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 286-327, March.
    11. Joshy Easaw & Roberto Golinelli, 2022. "Professionals Inflation Forecasts: The Two Dimensions Of Forecaster Inattentiveness [“Sectoral and aggregate inflation dynamics in the euro area”]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 701-720.
    12. Evangelos Charalambakis & Yiannis Dendramis & Elias Tzavalis, 2017. "On the determinants of NPLS: lessons from Greece," Working Papers 220, Bank of Greece.
    13. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    14. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    15. Caner,M. & Hansen,B.E., 1998. "Threshold autoregression with a near unit root," Working papers 27, Wisconsin Madison - Social Systems.
    16. Anne Morrison Piehl & Suzanne J. Cooper & Anthony A. Braga & David M. Kennedy, 2003. "Testing for Structural Breaks in the Evaluation of Programs," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 550-558, August.
    17. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    18. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
    19. Sudhanshu Kumar & Naveen Srinivasan & Muthiah Ramachandran, 2012. "A time‐varying parameter model of inflation in India," Indian Growth and Development Review, Emerald Group Publishing Limited, vol. 5(1), pages 25-50, April.
    20. Óscar Bajo Rubio & Carmen Díaz Roldán & Vicente Esteve, 2004. "Is the Fisher Effect Nonlinear? Some Evidence for Spain, 1963-2002," Economic Working Papers at Centro de Estudios Andaluces E2004/05, Centro de Estudios Andaluces.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:81:y:2016:i:4:d:10.1007_s11336-015-9476-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.