IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v152y2019icp111-120.html
   My bibliography  Save this article

Non-asymptotic bounds for percentiles of independent non-identical random variables

Author

Listed:
  • Xia, Dong

Abstract

This note displays an interesting phenomenon for the percentiles of independent but non-identical random variables. Let X1,…,Xn be independent random variables obeying non-identical continuous distributions and X(1)≥⋯≥X(n) be the corresponding order statistics. For p∈(0,1), we investigate the 100(1−p)%th percentile X(⌊pn⌋) and prove the non-asymptotic bounds for X(⌊pn⌋). In particular, for a wide class of distributions, we discover an intriguing connection between their median and the harmonic mean of the associated standard deviations. For example, if Xk∼N(0,σk2) for k=1,…,n and p=12, we show that its median |Med(X1,…,Xn)|=OP(n1∕2⋅(∑k=1nσk−1)−1) as long as {σk}k=1n satisfy certain mild non-dispersion property.

Suggested Citation

  • Xia, Dong, 2019. "Non-asymptotic bounds for percentiles of independent non-identical random variables," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 111-120.
  • Handle: RePEc:eee:stapro:v:152:y:2019:i:c:p:111-120
    DOI: 10.1016/j.spl.2019.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521930121X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    2. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    3. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    4. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    5. repec:jss:jstsof:12:i08 is not listed on IDEAS
    6. Porto, Rogério F. & Morettin, Pedro A. & Aubin, Elisete C.Q., 2008. "Wavelet regression with correlated errors on a piecewise Hölder class," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2739-2743, November.
    7. Capobianco Enrico & Marras Elisabetta & Travaglione Antonella, 2011. "Multiscale Characterization of Signaling Network Dynamics through Features," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, November.
    8. Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
    9. Christophe Chesneau & Fabien Navarro, 2017. "On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator," Working Papers 2017-68, Center for Research in Economics and Statistics.
    10. Capobianco, Enrico, 2004. "Effective decorrelation and space dimensionality reduction of multiscaling volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 340-346.
    11. Young Truong & Prakash Patil, 2001. "Asymptotics for Wavelet Based Estimates of Piecewise Smooth Regression for Stationary Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 159-178, March.
    12. Sam Efromovich & Jiayi Wu, 2018. "Wavelet Analysis of Big Data Contaminated by Large Noise in an fMRI Study of Neuroplasticity," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1381-1402, December.
    13. Kovac, Arne & Silverman, Bernard W., 1998. "Extending the scope of wavelet regression methods by coefficient-dependent thresholding," Technical Reports 1998,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Zhang, Shuanglin & Wong, Man-Yu & Zheng, Zhongguo, 2002. "Wavelet Threshold Estimation of a Regression Function with Random Design," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 256-284, February.
    15. Linyuan Li & Kewei Lu, 2013. "On rate-optimal nonparametric wavelet regression with long memory moving average errors," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 127-145, July.
    16. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    17. Lee, Kichun & Vidakovic, Brani, 2012. "Semi-supervised wavelet shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1681-1691.
    18. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    19. Holger Dette & Martin Kroll, 2022. "Asymptotic equivalence for nonparametric regression with dependent errors: Gauss–Markov processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1163-1196, December.
    20. Beran, Jan & Shumeyko, Yevgen, 2012. "Bootstrap testing for discontinuities under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 322-347.
    21. Tse, Y.K. & Anh, V.V. & Tieng, Q., 2002. "Maximum likelihood estimation of the fractional differencing parameter in an ARFIMA model using wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(1), pages 153-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:152:y:2019:i:c:p:111-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.