IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v149y2019icp100-106.html
   My bibliography  Save this article

A weighted discrepancy bound of quasi-Monte Carlo importance sampling

Author

Listed:
  • Dick, Josef
  • Rudolf, Daniel
  • Zhu, Houying

Abstract

Importance sampling Monte-Carlo methods are widely used for the approximation of expectations with respect to partially known probability measures. In this paper we study a deterministic version of such an estimator based on quasi-Monte Carlo. We obtain an explicit error bound in terms of the star-discrepancy for this method.

Suggested Citation

  • Dick, Josef & Rudolf, Daniel & Zhu, Houying, 2019. "A weighted discrepancy bound of quasi-Monte Carlo importance sampling," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 100-106.
  • Handle: RePEc:eee:stapro:v:149:y:2019:i:c:p:100-106
    DOI: 10.1016/j.spl.2019.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vandewoestyne, Bart & Cools, Ronald, 2010. "On the convergence of quasi-random sampling/importance resampling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 490-505.
    2. Mathieu Gerber & Nicolas Chopin, 2015. "Sequential quasi Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 509-579, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    2. Bhattacharya, Arnab & Wilson, Simon P., 2018. "Sequential Bayesian inference for static parameters in dynamic state space models," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 187-203.
    3. Jean-Jacques Forneron, 2019. "A Scrambled Method of Moments," Papers 1911.09128, arXiv.org.
    4. Golightly, Andrew & Bradley, Emma & Lowe, Tom & Gillespie, Colin S., 2019. "Correlated pseudo-marginal schemes for time-discretised stochastic kinetic models," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 92-107.
    5. Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
    6. Karol Gellert & Erik Schlögl, 2021. "Parameter Learning and Change Detection Using a Particle Filter with Accelerated Adaptation," Risks, MDPI, vol. 9(12), pages 1-18, December.
    7. Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.
    8. Mathieu GERBER & Nicolas CHOPIN & Nick WHITELEY, 2017. "Negative association, ordering and convergence of resampling methods," Working Papers 2017-36, Center for Research in Economics and Statistics.
    9. Chopin, Nicolas & Gadat, Sébastien & Guedj, Benjamin & Guyader, Arnaud & Vernet, Elodie, 2015. "On some recent advances in high dimensional Bayesian Statistics," TSE Working Papers 15-557, Toulouse School of Economics (TSE).
    10. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    11. Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.
    12. Zhijian He & Art B. Owen, 2016. "Extensible grids: uniform sampling on a space filling curve," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 917-931, September.
    13. Karamé, Frédéric, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
    14. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    15. Crucinio, Francesca R. & Johansen, Adam M., 2023. "Properties of marginal sequential Monte Carlo methods," Statistics & Probability Letters, Elsevier, vol. 203(C).
    16. Duan, Jin-Chuan & Fulop, Andras & Hsieh, Yu-Wei, 2020. "Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    17. Burkhart, Michael C., 2019. "A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding," Thesis Commons 4j3fu, Center for Open Science.
    18. Fulop, Andras & Li, Junye, 2019. "Bayesian estimation of dynamic asset pricing models with informative observations," Journal of Econometrics, Elsevier, vol. 209(1), pages 114-138.
    19. Fabian Goessling, 2018. "Human Capital, Growth, and Asset Prices," CQE Working Papers 6918, Center for Quantitative Economics (CQE), University of Muenster.
    20. L’Ecuyer, Pierre & Munger, David & Lécot, Christian & Tuffin, Bruno, 2018. "Sorting methods and convergence rates for Array-RQMC: Some empirical comparisons," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 191-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:149:y:2019:i:c:p:100-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.